These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 37141540)
1. Ligand-Mediated Hydrogenic Defects in Two-Dimensional Electrically Conductive Metal-Organic Frameworks. Debela TT; Yang MC; Hendon CH J Am Chem Soc; 2023 May; 145(20):11387-11391. PubMed ID: 37141540 [TBL] [Abstract][Full Text] [Related]
2. Pressure-induced metallicity and piezoreductive transition of metal-centres in conductive 2-dimensional metal-organic frameworks. Le KN; Hendon CH Phys Chem Chem Phys; 2019 Nov; 21(46):25773-25778. PubMed ID: 31724676 [TBL] [Abstract][Full Text] [Related]
3. Ruthenium(II) complex-grafted conductive metal-organic frameworks with conductivity- and confinement-enhanced electrochemiluminescence for ultrasensitive biosensing application. Zhang JL; Gao S; Yang Y; Liang WB; Lu ML; Zhang XY; Xiao HX; Li Y; Yuan R; Xiao DR Biosens Bioelectron; 2023 May; 227():115157. PubMed ID: 36841115 [TBL] [Abstract][Full Text] [Related]
4. Direct Electrodeposition of Electrically Conducting Ni Behboudikhiavi S; Chanteux G; Babu B; Faniel S; Marlec F; Robert K; Magnin D; Lucaccioni F; Omale JO; Apostol P; Piraux L; Lethien C; Vlad A Small; 2024 Sep; 20(36):e2401509. PubMed ID: 38698603 [TBL] [Abstract][Full Text] [Related]
5. Cu₃(hexaiminotriphenylene)₂: an electrically conductive 2D metal-organic framework for chemiresistive sensing. Campbell MG; Sheberla D; Liu SF; Swager TM; Dincă M Angew Chem Int Ed Engl; 2015 Mar; 54(14):4349-52. PubMed ID: 25678397 [TBL] [Abstract][Full Text] [Related]
6. Single Crystals of Electrically Conductive Two-Dimensional Metal-Organic Frameworks: Structural and Electrical Transport Properties. Day RW; Bediako DK; Rezaee M; Parent LR; Skorupskii G; Arguilla MQ; Hendon CH; Stassen I; Gianneschi NC; Kim P; Dincă M ACS Cent Sci; 2019 Dec; 5(12):1959-1964. PubMed ID: 31893225 [TBL] [Abstract][Full Text] [Related]
7. Metal-to-Semiconductor Transition in Two-Dimensional Metal-Organic Frameworks: An Zhang Z; Dell'Angelo D; Momeni MR; Shi Y; Shakib FA ACS Appl Mater Interfaces; 2021 Jun; 13(21):25270-25279. PubMed ID: 34015222 [TBL] [Abstract][Full Text] [Related]
8. Conductive Ni Zhao W; Chen T; Wang W; Jin B; Peng J; Bi S; Jiang M; Liu S; Zhao Q; Huang W Sci Bull (Beijing); 2020 Nov; 65(21):1803-1811. PubMed ID: 36659120 [TBL] [Abstract][Full Text] [Related]
9. Coupling of a conductive Ni Nazir A; Le HTT; Min CW; Kasbe A; Kim J; Jin CS; Park CJ Nanoscale; 2020 Jan; 12(3):1629-1642. PubMed ID: 31872835 [TBL] [Abstract][Full Text] [Related]
10. Solution-Processable MOF-on-MOF System Constructed via Template-Assisted Growth for Ultratrace H Wu X; Tian X; Zhang W; Peng X; Zhou S; Buenconsejo PJS; Li Y; Xiao S; Tao J; Zhang M; Yuan H Angew Chem Int Ed Engl; 2024 Dec; 63(49):e202410411. PubMed ID: 39187431 [TBL] [Abstract][Full Text] [Related]
11. Conductive Metal-Organic Frameworks with Extra Metallic Sites as an Efficient Electrocatalyst for the Hydrogen Evolution Reaction. Huang H; Zhao Y; Bai Y; Li F; Zhang Y; Chen Y Adv Sci (Weinh); 2020 May; 7(9):2000012. PubMed ID: 32382489 [TBL] [Abstract][Full Text] [Related]
12. Electrochemical Doping and Structural Modulation of Conductive Metal-Organic Frameworks. Zhou S; Liu T; Strømme M; Xu C Angew Chem Int Ed Engl; 2024 Apr; 63(14):e202318387. PubMed ID: 38349735 [TBL] [Abstract][Full Text] [Related]
13. Confined Synthesis of Oriented Two-Dimensional Ni Liu XH; Yang YW; Liu XM; Hao Q; Wang LM; Sun B; Wu J; Wang D Langmuir; 2020 Jul; 36(26):7528-7532. PubMed ID: 32513012 [TBL] [Abstract][Full Text] [Related]
14. A Highly Conductive MOF of Graphene Analogue Ni Cai D; Lu M; Li L; Cao J; Chen D; Tu H; Li J; Han W Small; 2019 Oct; 15(44):e1902605. PubMed ID: 31518060 [TBL] [Abstract][Full Text] [Related]
15. Density Functional Theory Study of Synergistic Gas Sensing Using an Electrically Conductive Mixed Ligand Two-Dimensional Metal-Organic Framework. Kang S; Jeon M; Kim J ACS Sens; 2023 Sep; 8(9):3448-3457. PubMed ID: 37611232 [TBL] [Abstract][Full Text] [Related]
16. Metal-organic Kagome lattices M3(2,3,6,7,10,11-hexaiminotriphenylene)2 (M = Ni and Cu): from semiconducting to metallic by metal substitution. Chen S; Dai J; Zeng XC Phys Chem Chem Phys; 2015 Feb; 17(8):5954-8. PubMed ID: 25636056 [TBL] [Abstract][Full Text] [Related]
17. Charge Transport in Zirconium-Based Metal-Organic Frameworks. Kung CW; Goswami S; Hod I; Wang TC; Duan J; Farha OK; Hupp JT Acc Chem Res; 2020 Jun; 53(6):1187-1195. PubMed ID: 32401008 [TBL] [Abstract][Full Text] [Related]
18. Sensing platform for the highly sensitive detection of catechol based on composite coupling with conductive Ni Xu Y; Ben Y; Sun L; Su J; Guo H; Zhou R; Wei Y; Wei Y; Lu Y; Sun Y; Zhang X Phys Chem Chem Phys; 2024 Jan; 26(4):2951-2962. PubMed ID: 38214187 [TBL] [Abstract][Full Text] [Related]
19. A portable ascorbic acid in sweat analysis system based on highly crystalline conductive nickel-based metal-organic framework (Ni-MOF). Wang L; Pan L; Han X; Ha MN; Li K; Yu H; Zhang Q; Li Y; Hou C; Wang H J Colloid Interface Sci; 2022 Jun; 616():326-337. PubMed ID: 35219198 [TBL] [Abstract][Full Text] [Related]
20. Insights into the electric double-layer capacitance of two-dimensional electrically conductive metal-organic frameworks. Gittins JW; Balhatchet CJ; Chen Y; Liu C; Madden DG; Britto S; Golomb MJ; Walsh A; Fairen-Jimenez D; Dutton SE; Forse AC J Mater Chem A Mater; 2021 Jul; 9(29):16006-16015. PubMed ID: 34354834 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]