These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 37141724)

  • 1. In situ monitoring of internal water storage reveals nitrogen first flush phenomena, intermittent denitrification, and seasonal ammonium flushing.
    Donaghue AG; Morgan N; Toran L; McKenzie ER
    J Environ Manage; 2023 Sep; 341():117957. PubMed ID: 37141724
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The impact of bioretention column internal water storage underdrain height on denitrification under continuous and transient flow.
    Donaghue AG; Morgan N; Toran L; McKenzie ER
    Water Res; 2022 May; 214():118205. PubMed ID: 35220064
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Long-term field performance of a conventional and modified bioretention system for removing dissolved nitrogen species in stormwater runoff.
    Lopez-Ponnada EV; Lynn TJ; Ergas SJ; Mihelcic JR
    Water Res; 2020 Mar; 170():115336. PubMed ID: 31841771
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Urban stormwater runoff nitrogen composition and fate in bioretention systems.
    Li L; Davis AP
    Environ Sci Technol; 2014 Mar; 48(6):3403-10. PubMed ID: 24571092
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tracking denitrification in green stormwater infrastructure with dual nitrate stable isotopes.
    Burgis CR; Hayes GM; Zhang W; Henderson DA; Macko SA; Smith JA
    Sci Total Environ; 2020 Dec; 747():141281. PubMed ID: 32795797
    [TBL] [Abstract][Full Text] [Related]  

  • 6. [Effects of Three Bioretention Configurations on Dissolved Nitrogen Removal from Urban Stormwater].
    Li LQ; Hu N; Liu YQ; Tu SL; Chen HC
    Huan Jing Ke Xue; 2017 May; 38(5):1881-1888. PubMed ID: 29965092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Estimating nitrogen fates and gross transformations in bioretention systems with applications of
    Wang F; Wang C; Zheng Y; Li X; Qin H; Ding W
    Chemosphere; 2021 May; 270():129462. PubMed ID: 33418215
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Developing nitrogen removal models for stormwater bioretention systems.
    Li J; Culver TB; Persaud PP; Hathaway JM
    Water Res; 2023 Sep; 243():120381. PubMed ID: 37517150
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydrologic and water quality performance of permeable pavement with internal water storage over a clay soil in Durham, North Carolina.
    Braswell AS; Winston RJ; Hunt WF
    J Environ Manage; 2018 Oct; 224():277-287. PubMed ID: 30055460
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Efficient nitrogen removal through coupling biochar with zero-valent iron by different packing modes in bioretention system.
    Chen J; Xie Y; Sun S; Zhang M; Yan P; Xu F; Tang L; He S
    Environ Res; 2023 Apr; 223():115375. PubMed ID: 36709026
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Soil nitrogen accumulation, denitrification potential, and carbon source tracing in bioretention basins.
    Kavehei E; Shahrabi Farahani B; Jenkins GA; Lemckert C; Adame MF
    Water Res; 2021 Jan; 188():116511. PubMed ID: 33069951
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Temporary storage or permanent removal? The division of nitrogen between biotic assimilation and denitrification in stormwater biofiltration systems.
    Payne EG; Fletcher TD; Russell DG; Grace MR; Cavagnaro TR; Evrard V; Deletic A; Hatt BE; Cook PL
    PLoS One; 2014; 9(3):e90890. PubMed ID: 24670377
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Composition of nitrogen in urban residential stormwater runoff: Concentrations, loads, and source characterization of nitrate and organic nitrogen.
    Jani J; Yang YY; Lusk MG; Toor GS
    PLoS One; 2020; 15(2):e0229715. PubMed ID: 32109256
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the transport and bio-degradation of dissolved inorganic nitrogen in the biochar-pyrite amended stormwater biofilter using dynamic modeling.
    Yang Y; Kong Z; Ma H; Shao Z; Wang X; Shen Y; Chai H
    J Environ Manage; 2023 Dec; 347():119152. PubMed ID: 37774660
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biochar-pyrite bi-layer bioretention system for dissolved nutrient treatment and by-product generation control under various stormwater conditions.
    Kong Z; Song Y; Shao Z; Chai H
    Water Res; 2021 Nov; 206():117737. PubMed ID: 34637973
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sources and transformations of anthropogenic nitrogen in the highly disturbed Huai River Basin, Eastern China.
    Ma P; Liu S; Yu Q; Li X; Han X
    Environ Sci Pollut Res Int; 2019 Apr; 26(11):11153-11169. PubMed ID: 30796665
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nitrogen process in stormwater bioretention: the impact of alternate drying and rewetting on nitrogen migration and transformation.
    Chen Y; Chen R; Liu Z; Yu X; Zheng S; Yuan S
    Environ Sci Pollut Res Int; 2021 Aug; 28(32):43803-43814. PubMed ID: 33840026
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A pilot-scale, bi-layer bioretention system with biochar and zero-valent iron for enhanced nitrate removal from stormwater.
    Tian J; Jin J; Chiu PC; Cha DK; Guo M; Imhoff PT
    Water Res; 2019 Jan; 148():378-387. PubMed ID: 30396103
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wet season nitrogen export from a residential stormwater pond.
    Jani J; Lusk MG; Yang YY; Toor GS
    PLoS One; 2020; 15(4):e0230908. PubMed ID: 32236119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. First flush characteristics of rainfall runoff from a paddy field in the Taihu Lake watershed, China.
    Li S; Wang X; Qiao B; Li J; Tu J
    Environ Sci Pollut Res Int; 2017 Mar; 24(9):8336-8351. PubMed ID: 28168564
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.