These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 37141863)

  • 1. Conducting polymer-based nanostructured materials for brain-machine interfaces.
    Ziai Y; Zargarian SS; Rinoldi C; Nakielski P; Sola A; Lanzi M; Truong YB; Pierini F
    Wiley Interdiscip Rev Nanomed Nanobiotechnol; 2023; 15(5):e1895. PubMed ID: 37141863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soft and Ion-Conducting Materials in Bioelectronics: From Conducting Polymers to Hydrogels.
    Jia M; Rolandi M
    Adv Healthc Mater; 2020 Mar; 9(5):e1901372. PubMed ID: 31976634
    [TBL] [Abstract][Full Text] [Related]  

  • 3. 3D printable high-performance conducting polymer hydrogel for all-hydrogel bioelectronic interfaces.
    Zhou T; Yuk H; Hu F; Wu J; Tian F; Roh H; Shen Z; Gu G; Xu J; Lu B; Zhao X
    Nat Mater; 2023 Jul; 22(7):895-902. PubMed ID: 37322141
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Highly Conducting and Stretchable Double-Network Hydrogel for Soft Bioelectronics.
    Li G; Huang K; Deng J; Guo M; Cai M; Zhang Y; Guo CF
    Adv Mater; 2022 Apr; 34(15):e2200261. PubMed ID: 35170097
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Three-Dimensional Printable Conductive Semi-Interpenetrating Polymer Network Hydrogel for Neural Tissue Applications.
    Rinoldi C; Lanzi M; Fiorelli R; Nakielski P; Zembrzycki K; Kowalewski T; Urbanek O; Grippo V; Jezierska-Woźniak K; Maksymowicz W; Camposeo A; Bilewicz R; Pisignano D; Sanai N; Pierini F
    Biomacromolecules; 2021 Jul; 22(7):3084-3098. PubMed ID: 34151565
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interpenetrating, microstructurable and covalently attached conducting polymer hydrogel for neural interfaces.
    Kleber C; Bruns M; Lienkamp K; Rühe J; Asplund M
    Acta Biomater; 2017 Aug; 58():365-375. PubMed ID: 28578108
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D printing of conducting polymers.
    Yuk H; Lu B; Lin S; Qu K; Xu J; Luo J; Zhao X
    Nat Commun; 2020 Mar; 11(1):1604. PubMed ID: 32231216
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of 3D printable conductive hydrogel with crystallized PEDOT:PSS for neural tissue engineering.
    Heo DN; Lee SJ; Timsina R; Qiu X; Castro NJ; Zhang LG
    Mater Sci Eng C Mater Biol Appl; 2019 Jun; 99():582-590. PubMed ID: 30889733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanically-Compliant Bioelectronic Interfaces through Fatigue-Resistant Conducting Polymer Hydrogel Coating.
    Xue Y; Chen X; Wang F; Lin J; Liu J
    Adv Mater; 2023 Oct; 35(40):e2304095. PubMed ID: 37381603
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D Printing of Robust High-Performance Conducting Polymer Hydrogel-Based Electrical Bioadhesive Interface for Soft Bioelectronics.
    Yu J; Wan R; Tian F; Cao J; Wang W; Liu Q; Yang H; Liu J; Liu X; Lin T; Xu J; Lu B
    Small; 2024 May; 20(19):e2308778. PubMed ID: 38063822
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Advances in conductive hydrogels for neural recording and stimulation.
    Dawit H; Zhao Y; Wang J; Pei R
    Biomater Sci; 2024 May; 12(11):2786-2800. PubMed ID: 38682423
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Engineering Electrodes with Robust Conducting Hydrogel Coating for Neural Recording and Modulation.
    Zhang J; Wang L; Xue Y; Lei IM; Chen X; Zhang P; Cai C; Liang X; Lu Y; Liu J
    Adv Mater; 2023 Jan; 35(3):e2209324. PubMed ID: 36398434
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 3D printed architected conducting polymer hydrogels.
    Jordan RS; Frye J; Hernandez V; Prado I; Giglio A; Abbasizadeh N; Flores-Martinez M; Shirzad K; Xu B; Hill IM; Wang Y
    J Mater Chem B; 2021 Sep; 9(35):7258-7270. PubMed ID: 34105592
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interpenetrating Conducting Hydrogel Materials for Neural Interfacing Electrodes.
    Goding J; Gilmour A; Martens P; Poole-Warren L; Green R
    Adv Healthc Mater; 2017 May; 6(9):. PubMed ID: 28198591
    [TBL] [Abstract][Full Text] [Related]  

  • 15.
    Rinoldi C; Ziai Y; Zargarian SS; Nakielski P; Zembrzycki K; Haghighat Bayan MA; Zakrzewska AB; Fiorelli R; Lanzi M; Kostrzewska-Księżyk A; Czajkowski R; Kublik E; Kaczmarek L; Pierini F
    ACS Appl Mater Interfaces; 2023 Feb; 15(5):6283-6296. PubMed ID: 36576451
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Soft Conducting Polymer Hydrogels Cross-Linked and Doped by Tannic Acid for Spinal Cord Injury Repair.
    Zhou L; Fan L; Yi X; Zhou Z; Liu C; Fu R; Dai C; Wang Z; Chen X; Yu P; Chen D; Tan G; Wang Q; Ning C
    ACS Nano; 2018 Nov; 12(11):10957-10967. PubMed ID: 30285411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rational design of injectable conducting polymer-based hydrogels for tissue engineering.
    Yu C; Yao F; Li J
    Acta Biomater; 2022 Feb; 139():4-21. PubMed ID: 33894350
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanomaterial-based biohybrid hydrogel in bioelectronics.
    Shin M; Lim J; An J; Yoon J; Choi JW
    Nano Converg; 2023 Feb; 10(1):8. PubMed ID: 36763293
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Application of Thermoresponsive Intrinsically Disordered Protein Polymers in Nanostructured and Microstructured Materials.
    Wang B; Patkar SS; Kiick KL
    Macromol Biosci; 2021 Sep; 21(9):e2100129. PubMed ID: 34145967
    [TBL] [Abstract][Full Text] [Related]  

  • 20. An interpenetrating and patternable conducting polymer hydrogel for electrically stimulated release of glutamate.
    Bansal M; Raos B; Aqrawe Z; Wu Z; Svirskis D
    Acta Biomater; 2022 Jan; 137():124-135. PubMed ID: 34644612
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.