These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 37141863)

  • 21. 3D printing of electrically conductive hydrogels for tissue engineering and biosensors - A review.
    Distler T; Boccaccini AR
    Acta Biomater; 2020 Jan; 101():1-13. PubMed ID: 31476385
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Conducting Polymers for Tissue Engineering.
    Guo B; Ma PX
    Biomacromolecules; 2018 Jun; 19(6):1764-1782. PubMed ID: 29684268
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Bioactive polymer-enabled conformal neural interface and its application strategies.
    Hu Z; Niu Q; Hsiao BS; Yao X; Zhang Y
    Mater Horiz; 2023 Mar; 10(3):808-828. PubMed ID: 36597872
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Pure Conducting Polymer Hydrogels Increase Signal-to-Noise of Cutaneous Electrodes by Lowering Skin Interface Impedance.
    Roubert Martinez S; Le Floch P; Liu J; Howe RD
    Adv Healthc Mater; 2023 Jul; 12(17):e2202661. PubMed ID: 36867669
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Tissue-Mimetic Supramolecular Polymer Networks for Bioelectronics.
    O'Neill SJK; Huang Z; Ahmed MH; Boys AJ; Velasco-Bosom S; Li J; Owens RM; McCune JA; Malliaras GG; Scherman OA
    Adv Mater; 2023 Jan; 35(1):e2207634. PubMed ID: 36314408
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Highly Conductive, Stretchable, and Cell-Adhesive Hydrogel by Nanoclay Doping.
    Tondera C; Akbar TF; Thomas AK; Lin W; Werner C; Busskamp V; Zhang Y; Minev IR
    Small; 2019 Jul; 15(27):e1901406. PubMed ID: 31025545
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hydrogel-Based Bioelectronics and Their Applications in Health Monitoring.
    Hua J; Su M; Sun X; Li J; Sun Y; Qiu H; Shi Y; Pan L
    Biosensors (Basel); 2023 Jun; 13(7):. PubMed ID: 37504095
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nanoparticle-Polymer Synergies in Nanocomposite Hydrogels: From Design to Application.
    Chen T; Hou K; Ren Q; Chen G; Wei P; Zhu M
    Macromol Rapid Commun; 2018 Nov; 39(21):e1800337. PubMed ID: 30118163
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Multifunctional hybrid hydrogel with transparency, conductivity, and self-adhesion for soft sensors using hemicellulose-decorated polypyrrole as a conductive matrix.
    Zhang W; Wen J; Yang J; Li M; Peng F; Ma M; Bian J
    Int J Biol Macromol; 2022 Dec; 223(Pt A):1-10. PubMed ID: 36336151
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Biodegradable and electroconductive poly(3,4-ethylenedioxythiophene)/carboxymethyl chitosan hydrogels for neural tissue engineering.
    Xu C; Guan S; Wang S; Gong W; Liu T; Ma X; Sun C
    Mater Sci Eng C Mater Biol Appl; 2018 Mar; 84():32-43. PubMed ID: 29519441
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A Review: Electrode and Packaging Materials for Neurophysiology Recording Implants.
    Yang W; Gong Y; Li W
    Front Bioeng Biotechnol; 2020; 8():622923. PubMed ID: 33585422
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrically conducting polymers for bio-interfacing electronics: From neural and cardiac interfaces to bone and artificial tissue biomaterials.
    Lee S; Ozlu B; Eom T; Martin DC; Shim BS
    Biosens Bioelectron; 2020 Dec; 170():112620. PubMed ID: 33035903
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Nanoengineered biomimetic hydrogels: A major advancement to fabricate 3D-printed constructs for regenerative medicine.
    Cernencu AI; Dinu AI; Stancu IC; Lungu A; Iovu H
    Biotechnol Bioeng; 2022 Mar; 119(3):762-783. PubMed ID: 34961918
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Manufacturing and post-engineering strategies of hydrogel actuators and sensors: From materials to interfaces.
    Zhao Y; Cui J; Qiu X; Yan Y; Zhang Z; Fang K; Yang Y; Zhang X; Huang J
    Adv Colloid Interface Sci; 2022 Oct; 308():102749. PubMed ID: 36007285
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Silk protein-based hydrogels: Promising advanced materials for biomedical applications.
    Kapoor S; Kundu SC
    Acta Biomater; 2016 Feb; 31():17-32. PubMed ID: 26602821
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant.
    Green RA; Lovell NH; Wallace GG; Poole-Warren LA
    Biomaterials; 2008; 29(24-25):3393-9. PubMed ID: 18501423
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Recent advances in conductive polymer hydrogel composites and nanocomposites for flexible electrochemical supercapacitors.
    Li L; Meng J; Zhang M; Liu T; Zhang C
    Chem Commun (Camb); 2021 Dec; 58(2):185-207. PubMed ID: 34881748
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Hofmeister-Effect-Guided Ionohydrogel Design as Printable Bioelectronic Devices.
    Shang Y; Wu C; Hang C; Lu H; Wang Q
    Adv Mater; 2020 Jul; 32(30):e2000189. PubMed ID: 32567056
    [TBL] [Abstract][Full Text] [Related]  

  • 39. 3D printing of cell-laden electroconductive bioinks for tissue engineering applications.
    Rastin H; Zhang B; Bi J; Hassan K; Tung TT; Losic D
    J Mater Chem B; 2020 Jul; 8(27):5862-5876. PubMed ID: 32558857
    [TBL] [Abstract][Full Text] [Related]  

  • 40. 3D Printing of Interpenetrating Network Flexible Hydrogels with Enhancement of Adhesiveness.
    Zhang L; Du H; Sun X; Cheng F; Lee W; Li J; Dai G; Fang NX; Liu Y
    ACS Appl Mater Interfaces; 2023 Sep; 15(35):41892-41905. PubMed ID: 37615397
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.