These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
22. Aerodynamic effects of flexibility in flapping wings. Zhao L; Huang Q; Deng X; Sane SP J R Soc Interface; 2010 Mar; 7(44):485-97. PubMed ID: 19692394 [TBL] [Abstract][Full Text] [Related]
23. Computational investigation of wing-body interaction and its lift enhancement effect in hummingbird forward flight. Wang J; Ren Y; Li C; Dong H Bioinspir Biomim; 2019 Jun; 14(4):046010. PubMed ID: 31096194 [TBL] [Abstract][Full Text] [Related]
24. When vortices stick: an aerodynamic transition in tiny insect flight. Miller LA; Peskin CS J Exp Biol; 2004 Aug; 207(Pt 17):3073-88. PubMed ID: 15277562 [TBL] [Abstract][Full Text] [Related]
25. Dragonfly flight: free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Thomas AL; Taylor GK; Srygley RB; Nudds RL; Bomphrey RJ J Exp Biol; 2004 Nov; 207(Pt 24):4299-323. PubMed ID: 15531651 [TBL] [Abstract][Full Text] [Related]
26. Wing-wake interaction: comparison of 2D and 3D flapping wings in hover flight. Lee YJ; Lua KB Bioinspir Biomim; 2018 Sep; 13(6):066003. PubMed ID: 30132443 [TBL] [Abstract][Full Text] [Related]
27. Investigation of chordwise functionally graded flexural rigidity in flapping wings using a two-dimensional pitch-plunge model. Reade J; Jankauski M Bioinspir Biomim; 2022 Oct; 17(6):. PubMed ID: 36055234 [TBL] [Abstract][Full Text] [Related]
28. Effect of clap-and-fling mechanism on force generation in flapping wing micro aerial vehicles. Jadhav SS; Lua KB; Tay WB Bioinspir Biomim; 2019 Feb; 14(3):036006. PubMed ID: 30721890 [TBL] [Abstract][Full Text] [Related]
29. Computational Study of Aerodynamic Effects of the Dihedral and Angle of Attack of Biomimetic Grids Installed on a Mini UAV. Bardera R; Rodríguez-Sevillano ÁA; Barroso Barderas E; Matias Garcia JC Biomimetics (Basel); 2023 Dec; 9(1):. PubMed ID: 38248586 [TBL] [Abstract][Full Text] [Related]
30. Modulation of Flight Muscle Recruitment and Wing Rotation Enables Hummingbirds to Mitigate Aerial Roll Perturbations. Ravi S; Noda R; Gagliardi S; Kolomenskiy D; Combes S; Liu H; Biewener AA; Konow N Curr Biol; 2020 Jan; 30(2):187-195.e4. PubMed ID: 31902723 [TBL] [Abstract][Full Text] [Related]
31. Flow structure modifications by leading-edge tubercles on a 3D wing. Kim H; Kim J; Choi H Bioinspir Biomim; 2018 Oct; 13(6):066011. PubMed ID: 30362460 [TBL] [Abstract][Full Text] [Related]
32. Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Sun M; Tang J J Exp Biol; 2002 Jan; 205(Pt 1):55-70. PubMed ID: 11818412 [TBL] [Abstract][Full Text] [Related]
33. Covert-inspired flaps for lift enhancement and stall mitigation. Duan C; Wissa A Bioinspir Biomim; 2021 Jun; 16(4):. PubMed ID: 33784648 [TBL] [Abstract][Full Text] [Related]
35. A lifting line model to investigate the influence of tip feathers on wing performance. Fluck M; Crawford C Bioinspir Biomim; 2014 Nov; 9(4):046017. PubMed ID: 25418986 [TBL] [Abstract][Full Text] [Related]
36. A songbird compensates for wing molt during escape flights by reducing the molt gap and increasing angle of attack. Tomotani BM; Muijres FT J Exp Biol; 2019 May; 222(Pt 10):. PubMed ID: 31085600 [TBL] [Abstract][Full Text] [Related]
37. Unsteady forces and flows in low Reynolds number hovering flight: two-dimensional computations vs robotic wing experiments. Wang ZJ; Birch JM; Dickinson MH J Exp Biol; 2004 Jan; 207(Pt 3):449-60. PubMed ID: 14691093 [TBL] [Abstract][Full Text] [Related]
38. Effects of Reynolds Number and Distribution on Passive Flow Control in Owl-Inspired Leading-Edge Serrations. Rao C; Liu H Integr Comp Biol; 2020 Nov; 60(5):1135-1146. PubMed ID: 32805051 [TBL] [Abstract][Full Text] [Related]
40. Owl-inspired leading-edge serrations play a crucial role in aerodynamic force production and sound suppression. Rao C; Ikeda T; Nakata T; Liu H Bioinspir Biomim; 2017 Jul; 12(4):046008. PubMed ID: 28675148 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]