These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 37141963)

  • 21. Nanofibrous Mineralized Electrospun Scaffold as a Substrate for Bone Tissue Regeneration.
    Park H; Lim DJ; Lee SH; Park H
    J Biomed Nanotechnol; 2016 Nov; 12(11):2076-82. PubMed ID: 29364624
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Preparation and characterization of electrospun polycaprolactone/brushite scaffolds to promote osteogenic differentiation of mesenchymal stem cells.
    Nikakhtar Y; Shafiei SS; Fathi-Roudsari M; Asadi-Eydivand M; ShiraliPour F
    J Biomater Sci Polym Ed; 2022 Jun; 33(9):1102-1122. PubMed ID: 35144516
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Evaluation of the effects of decellularized extracellular matrix nanoparticles incorporation on the polyhydroxybutyrate/nano chitosan electrospun scaffold for cartilage tissue engineering.
    Mohammadi N; Alikhasi Amnieh Y; Ghasemi S; Karbasi S; Vaezifar S
    Int J Biol Macromol; 2024 Jul; 273(Pt 2):133217. PubMed ID: 38897519
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Customized Ca-P/PHBV nanocomposite scaffolds for bone tissue engineering: design, fabrication, surface modification and sustained release of growth factor.
    Duan B; Wang M
    J R Soc Interface; 2010 Oct; 7 Suppl 5(Suppl 5):S615-29. PubMed ID: 20504805
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Development of a nanocomposite scaffold of gelatin-alginate-graphene oxide for bone tissue engineering.
    Purohit SD; Bhaskar R; Singh H; Yadav I; Gupta MK; Mishra NC
    Int J Biol Macromol; 2019 Jul; 133():592-602. PubMed ID: 31004650
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Triple PLGA/PCL Scaffold Modification Including Silver Impregnation, Collagen Coating, and Electrospinning Significantly Improve Biocompatibility, Antimicrobial, and Osteogenic Properties for Orofacial Tissue Regeneration.
    Qian Y; Zhou X; Zhang F; Diekwisch TGH; Luan X; Yang J
    ACS Appl Mater Interfaces; 2019 Oct; 11(41):37381-37396. PubMed ID: 31517483
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Drug-eluting PCL/graphene oxide nanocomposite scaffolds for enhanced osteogenic differentiation of mesenchymal stem cells.
    Rostami F; Tamjid E; Behmanesh M
    Mater Sci Eng C Mater Biol Appl; 2020 Oct; 115():111102. PubMed ID: 32600706
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Incorporation of graphene oxide as a coupling agent in a 3D printed polylactic acid/hardystonite nanocomposite scaffold for bone tissue regeneration applications.
    Tavakoli M; Emadi R; Salehi H; Labbaf S; Varshosaz J
    Int J Biol Macromol; 2023 Dec; 253(Pt 1):126510. PubMed ID: 37625748
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gelatin-alginate-cerium oxide nanocomposite scaffold for bone regeneration.
    Purohit SD; Singh H; Bhaskar R; Yadav I; Chou CF; Gupta MK; Mishra NC
    Mater Sci Eng C Mater Biol Appl; 2020 Nov; 116():111111. PubMed ID: 32806319
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Hybrid biofabrication of 3D osteoconductive constructs comprising Mg-based nanocomposites and cell-laden bioinks for bone repair.
    Alcala-Orozco CR; Mutreja I; Cui X; Hooper GJ; Lim KS; Woodfield TBF
    Bone; 2022 Jan; 154():116198. PubMed ID: 34534709
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Highly porous PHB-based bioactive scaffolds for bone tissue engineering by in situ synthesis of hydroxyapatite.
    Degli Esposti M; Chiellini F; Bondioli F; Morselli D; Fabbri P
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():286-296. PubMed ID: 30948063
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electrospun carboxyl multi-walled carbon nanotubes grafted polyhydroxybutyrate composite nanofibers membrane scaffolds: Preparation, characterization and cytocompatibility.
    Zhijiang C; Cong Z; Jie G; Qing Z; Kongyin Z
    Mater Sci Eng C Mater Biol Appl; 2018 Jan; 82():29-40. PubMed ID: 29025660
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of cellulose nanofibers on polyhydroxybutyrate electrospun scaffold for bone tissue engineering applications.
    Mohammadalipour M; Karbasi S; Behzad T; Mohammadalipour Z; Zamani M
    Int J Biol Macromol; 2022 Nov; 220():1402-1414. PubMed ID: 36116594
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrospun Polyhydroxybutyrate/Poly(ε-caprolactone)/58S Sol-Gel Bioactive Glass Hybrid Scaffolds with Highly Improved Osteogenic Potential for Bone Tissue Engineering.
    Ding Y; Li W; Müller T; Schubert DW; Boccaccini AR; Yao Q; Roether JA
    ACS Appl Mater Interfaces; 2016 Jul; 8(27):17098-108. PubMed ID: 27295496
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Ultra-thin electrospun nanocomposite scaffold of poly (3-hydroxybutyrate)-chitosan/magnetic mesoporous bioactive glasses for bone tissue engineering applications.
    Toloue EB; Mohammadalipour M; Mukherjee S; Karbasi S
    Int J Biol Macromol; 2024 Jan; 254(Pt 2):127860. PubMed ID: 37939755
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Nanocomposite scaffolds composed of Apacite (apatite-calcite) nanostructures, poly (ε-caprolactone) and poly (2-hydroxyethylmethacrylate): The effect of nanostructures on physico-mechanical properties and osteogenic differentiation of human bone marrow mesenchymal stem cells in vitro.
    Shams M; Karimi M; Heydari M; Salimi A
    Mater Sci Eng C Mater Biol Appl; 2020 Dec; 117():111271. PubMed ID: 32919635
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Chitosan-hybrid poss nanocomposites for bone regeneration: The effect of poss nanocage on surface, morphology, structure and in vitro bioactivity.
    Tamburaci S; Tihminlioglu F
    Int J Biol Macromol; 2020 Jan; 142():643-657. PubMed ID: 31622724
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nanoclay-enriched poly(ɛ-caprolactone) electrospun scaffolds for osteogenic differentiation of human mesenchymal stem cells.
    Gaharwar AK; Mukundan S; Karaca E; Dolatshahi-Pirouz A; Patel A; Rangarajan K; Mihaila SM; Iviglia G; Zhang H; Khademhosseini A
    Tissue Eng Part A; 2014 Aug; 20(15-16):2088-101. PubMed ID: 24842693
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Platelet-rich fibrin-loaded PCL/chitosan core-shell fibers scaffold for enhanced osteogenic differentiation of mesenchymal stem cells.
    Rastegar A; Mahmoodi M; Mirjalili M; Nasirizadeh N
    Carbohydr Polym; 2021 Oct; 269():118351. PubMed ID: 34294355
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Generation of bioactive nano-composite scaffold of nanobioglass/silk fibroin/carboxymethyl cellulose for bone tissue engineering.
    Singh BN; Pramanik K
    J Biomater Sci Polym Ed; 2018 Nov; 29(16):2011-2034. PubMed ID: 30209974
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.