These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 37141982)
1. Patient-Specific Auto-segmentation on Daily kVCT Images for Adaptive Radiation Therapy. Chen Y; Gensheimer MF; Bagshaw HP; Butler S; Yu L; Zhou Y; Shen L; Kovalchuk N; Surucu M; Chang DT; Xing L; Han B Int J Radiat Oncol Biol Phys; 2023 Oct; 117(2):505-514. PubMed ID: 37141982 [TBL] [Abstract][Full Text] [Related]
2. Clinical feasibility of deep learning-based auto-segmentation of target volumes and organs-at-risk in breast cancer patients after breast-conserving surgery. Chung SY; Chang JS; Choi MS; Chang Y; Choi BS; Chun J; Keum KC; Kim JS; Kim YB Radiat Oncol; 2021 Feb; 16(1):44. PubMed ID: 33632248 [TBL] [Abstract][Full Text] [Related]
3. Patient-specific transfer learning for auto-segmentation in adaptive 0.35 T MRgRT of prostate cancer: a bi-centric evaluation. Kawula M; Hadi I; Nierer L; Vagni M; Cusumano D; Boldrini L; Placidi L; Corradini S; Belka C; Landry G; Kurz C Med Phys; 2023 Mar; 50(3):1573-1585. PubMed ID: 36259384 [TBL] [Abstract][Full Text] [Related]
4. The dosimetric impact of deep learning-based auto-segmentation of organs at risk on nasopharyngeal and rectal cancer. Guo H; Wang J; Xia X; Zhong Y; Peng J; Zhang Z; Hu W Radiat Oncol; 2021 Jun; 16(1):113. PubMed ID: 34162410 [TBL] [Abstract][Full Text] [Related]
5. Segmentation of organs-at-risks in head and neck CT images using convolutional neural networks. Ibragimov B; Xing L Med Phys; 2017 Feb; 44(2):547-557. PubMed ID: 28205307 [TBL] [Abstract][Full Text] [Related]
6. Transfer learning for auto-segmentation of 17 organs-at-risk in the head and neck: Bridging the gap between institutional and public datasets. Clark B; Hardcastle N; Johnston LA; Korte J Med Phys; 2024 Jul; 51(7):4767-4777. PubMed ID: 38376454 [TBL] [Abstract][Full Text] [Related]
7. Comparative clinical evaluation of atlas and deep-learning-based auto-segmentation of organ structures in liver cancer. Ahn SH; Yeo AU; Kim KH; Kim C; Goh Y; Cho S; Lee SB; Lim YK; Kim H; Shin D; Kim T; Kim TH; Youn SH; Oh ES; Jeong JH Radiat Oncol; 2019 Nov; 14(1):213. PubMed ID: 31775825 [TBL] [Abstract][Full Text] [Related]
8. Automatic segmentation of the clinical target volume and organs at risk in the planning CT for rectal cancer using deep dilated convolutional neural networks. Men K; Dai J; Li Y Med Phys; 2017 Dec; 44(12):6377-6389. PubMed ID: 28963779 [TBL] [Abstract][Full Text] [Related]
9. Improved accuracy of auto-segmentation of organs at risk in radiotherapy planning for nasopharyngeal carcinoma based on fully convolutional neural network deep learning. Peng Y; Liu Y; Shen G; Chen Z; Chen M; Miao J; Zhao C; Deng J; Qi Z; Deng X Oral Oncol; 2023 Jan; 136():106261. PubMed ID: 36446186 [TBL] [Abstract][Full Text] [Related]
10. Evaluating Automatic Segmentation for Swallowing-Related Organs for Head and Neck Cancer. Li Y; Rao S; Chen W; Azghadi SF; Nguyen KNB; Moran A; Usera BM; Dyer BA; Shang L; Chen Q; Rong Y Technol Cancer Res Treat; 2022; 21():15330338221105724. PubMed ID: 35790457 [No Abstract] [Full Text] [Related]
11. Fully automatic multi-organ segmentation for head and neck cancer radiotherapy using shape representation model constrained fully convolutional neural networks. Tong N; Gou S; Yang S; Ruan D; Sheng K Med Phys; 2018 Oct; 45(10):4558-4567. PubMed ID: 30136285 [TBL] [Abstract][Full Text] [Related]
12. Registration-guided deep learning image segmentation for cone beam CT-based online adaptive radiotherapy. Ma L; Chi W; Morgan HE; Lin MH; Chen M; Sher D; Moon D; Vo DT; Avkshtol V; Lu W; Gu X Med Phys; 2022 Aug; 49(8):5304-5316. PubMed ID: 35460584 [TBL] [Abstract][Full Text] [Related]
13. AAR-RT - A system for auto-contouring organs at risk on CT images for radiation therapy planning: Principles, design, and large-scale evaluation on head-and-neck and thoracic cancer cases. Wu X; Udupa JK; Tong Y; Odhner D; Pednekar GV; Simone CB; McLaughlin D; Apinorasethkul C; Apinorasethkul O; Lukens J; Mihailidis D; Shammo G; James P; Tiwari A; Wojtowicz L; Camaratta J; Torigian DA Med Image Anal; 2019 May; 54():45-62. PubMed ID: 30831357 [TBL] [Abstract][Full Text] [Related]
14. Patient-specific daily updated deep learning auto-segmentation for MRI-guided adaptive radiotherapy. Li Z; Zhang W; Li B; Zhu J; Peng Y; Li C; Zhu J; Zhou Q; Yin Y Radiother Oncol; 2022 Dec; 177():222-230. PubMed ID: 36375561 [TBL] [Abstract][Full Text] [Related]
15. Clinical evaluation of deep learning and atlas-based auto-segmentation for critical organs at risk in radiation therapy. Gibbons E; Hoffmann M; Westhuyzen J; Hodgson A; Chick B; Last A J Med Radiat Sci; 2023 Apr; 70 Suppl 2(Suppl 2):15-25. PubMed ID: 36148621 [TBL] [Abstract][Full Text] [Related]
16. AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Zhu W; Huang Y; Zeng L; Chen X; Liu Y; Qian Z; Du N; Fan W; Xie X Med Phys; 2019 Feb; 46(2):576-589. PubMed ID: 30480818 [TBL] [Abstract][Full Text] [Related]
17. Automatic multiorgan segmentation in thorax CT images using U-net-GAN. Dong X; Lei Y; Wang T; Thomas M; Tang L; Curran WJ; Liu T; Yang X Med Phys; 2019 May; 46(5):2157-2168. PubMed ID: 30810231 [TBL] [Abstract][Full Text] [Related]
18. Evaluation of auto-segmentation for EBRT planning structures using deep learning-based workflow on cervical cancer. Wang J; Chen Y; Xie H; Luo L; Tang Q Sci Rep; 2022 Aug; 12(1):13650. PubMed ID: 35953516 [TBL] [Abstract][Full Text] [Related]
19. Segmentation by test-time optimization for CBCT-based adaptive radiation therapy. Liang X; Chun J; Morgan H; Bai T; Nguyen D; Park J; Jiang S Med Phys; 2023 Apr; 50(4):1947-1961. PubMed ID: 36310403 [TBL] [Abstract][Full Text] [Related]
20. Progressively refined deep joint registration segmentation (ProRSeg) of gastrointestinal organs at risk: Application to MRI and cone-beam CT. Jiang J; Hong J; Tringale K; Reyngold M; Crane C; Tyagi N; Veeraraghavan H Med Phys; 2023 Aug; 50(8):4758-4774. PubMed ID: 37265185 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]