These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
189 related articles for article (PubMed ID: 37142006)
1. Efficiency and mechanism in preparation and heavy metal cation/anion adsorption of amphoteric adsorbents modified from various plant straws. Wu Y; Ming J; Zhou W; Xiao N; Cai J Sci Total Environ; 2023 Aug; 884():163887. PubMed ID: 37142006 [TBL] [Abstract][Full Text] [Related]
2. Effect of chemical and biological degumming on the adsorption of heavy metal by cellulose xanthogenates prepared from Eichhornia crassipes. Deng L; Geng M; Zhu D; Zhou W; Langdon A; Wu H; Yu Y; Zhu Z; Wang Y Bioresour Technol; 2012 Mar; 107():41-5. PubMed ID: 22248798 [TBL] [Abstract][Full Text] [Related]
3. Hexavalent chromium removal from water: adsorption properties of in natura and magnetic nanomodified sugarcane bagasse. Abilio TE; Soares BC; José JC; Milani PA; Labuto G; Carrilho ENVM Environ Sci Pollut Res Int; 2021 May; 28(19):24816-24829. PubMed ID: 33405161 [TBL] [Abstract][Full Text] [Related]
4. Recycling application of waste long-root Eichhornia crassipes in the heavy metal removal using oxidized biochar derived as adsorbents. Lin S; Huang W; Yang H; Sun S; Yu J Bioresour Technol; 2020 Oct; 314():123749. PubMed ID: 32623285 [TBL] [Abstract][Full Text] [Related]
5. Estimation of equilibrium times and maximum capacity of adsorption of heavy metals by E. crassipes (review). Sayago UFC; Castro YP; Rivera LRC; Mariaca AG Environ Monit Assess; 2020 Jan; 192(2):141. PubMed ID: 31982980 [TBL] [Abstract][Full Text] [Related]
6. Removal of heavy metal ions from wastewater by chemically modified plant wastes as adsorbents: a review. Wan Ngah WS; Hanafiah MA Bioresour Technol; 2008 Jul; 99(10):3935-48. PubMed ID: 17681755 [TBL] [Abstract][Full Text] [Related]
7. Reutilization of waste biomass from sugarcane bagasse and orange peel to obtain carbon foams: Applications in the metal ions removal. Licona-Aguilar ÁI; Torres-Huerta AM; Domínguez-Crespo MA; Palma-Ramírez D; Conde-Barajas E; Negrete-Rodríguez MXL; Rodríguez-Salazar AE; García-Zaleta DS Sci Total Environ; 2022 Jul; 831():154883. PubMed ID: 35358521 [TBL] [Abstract][Full Text] [Related]
8. Kinetics of cadmium, chromium, and lead sorption onto chemically modified sugarcane bagasse and wheat straw. Mahmood-ul-Hassan M; Suthar V; Rafique E; Ahmad R; Yasin M Environ Monit Assess; 2015 Jul; 187(7):470. PubMed ID: 26116198 [TBL] [Abstract][Full Text] [Related]
9. New strategy to enhance heavy metal ions removal from synthetic wastewater by mercapto-functionalized hydrous manganese oxide via adsorption and membrane separation. Hezarjaribi M; Bakeri G; Sillanpää M; Chaichi MJ; Akbari S; Rahimpour A Environ Sci Pollut Res Int; 2021 Oct; 28(37):51808-51825. PubMed ID: 33990925 [TBL] [Abstract][Full Text] [Related]
10. Characterization and Interpretation of Cd (II) Adsorption by Different Modified Rice Straws under Contrasting Conditions. Wang S; Wang N; Yao K; Fan Y; Li W; Han W; Yin X; Chen D Sci Rep; 2019 Nov; 9(1):17868. PubMed ID: 31780801 [TBL] [Abstract][Full Text] [Related]
11. Enhanced removal of Cr(VI) via in-situ synergistic reduction and fixation by polypyrrole/sugarcane bagasse composites. Chen Z; Pan K Chemosphere; 2021 Jun; 272():129606. PubMed ID: 33465610 [TBL] [Abstract][Full Text] [Related]
12. Ionized acrylamide-based copolymer / terpolymer hydrogels for recovery of positive and negative heavy metal ions. Fujimoto K; Omondi BA; Kawano S; Hidaka Y; Ishida K; Okabe H; Hara K PLoS One; 2024; 19(3):e0298047. PubMed ID: 38427672 [TBL] [Abstract][Full Text] [Related]
13. Study on the adsorption performance and competitive mechanism for heavy metal contaminants removal using novel multi-pore activated carbons derived from recyclable long-root Eichhornia crassipes. Cao F; Lian C; Yu J; Yang H; Lin S Bioresour Technol; 2019 Mar; 276():211-218. PubMed ID: 30640014 [TBL] [Abstract][Full Text] [Related]
14. Rapid preparation of biosorbents with high ion exchange capacity from rice straw and bagasse for removal of heavy metals. Rungrodnimitchai S ScientificWorldJournal; 2014; 2014():634837. PubMed ID: 24578651 [TBL] [Abstract][Full Text] [Related]
15. Novel modified semi-carbonized fiber prepared using discarded clothes for derisking Cu(II) and Pb(II) contaminated water. Deng HY; Wang YF; Guo MT; Li WB; Li M; Yu CT J Environ Manage; 2024 Feb; 351():119997. PubMed ID: 38160546 [TBL] [Abstract][Full Text] [Related]
16. A review on modification methods to cellulose-based adsorbents to improve adsorption capacity. Hokkanen S; Bhatnagar A; Sillanpää M Water Res; 2016 Mar; 91():156-73. PubMed ID: 26789698 [TBL] [Abstract][Full Text] [Related]
17. Single and binary adsorption of heavy metal ions from aqueous solutions using sugarcane cellulose-based adsorbent. Wang F; Pan Y; Cai P; Guo T; Xiao H Bioresour Technol; 2017 Oct; 241():482-490. PubMed ID: 28600942 [TBL] [Abstract][Full Text] [Related]
18. Adsorption behavior of heavy metals onto chemically modified sugarcane bagasse. Lal Homagai P; Ghimire KN; Inoue K Bioresour Technol; 2010 Mar; 101(6):2067-9. PubMed ID: 20006923 [TBL] [Abstract][Full Text] [Related]
19. Efficient adsorption of multiple heavy metals with tailored silica aerogel-like materials. Vareda JP; Durães L Environ Technol; 2019 Jan; 40(4):529-541. PubMed ID: 29098957 [TBL] [Abstract][Full Text] [Related]
20. Synthesis of Cellulose-Poly(Acrylic Acid) Using Sugarcane Bagasse Extracted Cellulose Fibres for the Removal of Heavy Metal Ions. Li F; Xie Z; Wen J; Tang T; Jiang L; Hu G; Li M Int J Mol Sci; 2023 May; 24(10):. PubMed ID: 37240268 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]