BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 37142039)

  • 1. The impact of potential leakage from the sub-seabed CO
    Łukawska-Matuszewska K; Graca B; Sokołowski A; Burska D; Pryputniewicz-Flis D; Nordtug T; Øverjordet IB
    Sci Total Environ; 2023 Aug; 886():163879. PubMed ID: 37142039
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects on the mobility of metals from acidification caused by possible CO₂ leakage from sub-seabed geological formations.
    de Orte MR; Sarmiento AM; Basallote MD; Rodríguez-Romero A; Riba I; Delvalls A
    Sci Total Environ; 2014 Feb; 470-471():356-63. PubMed ID: 24144940
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Laboratory simulation system, using Carcinus maenas as the model organism, for assessing the impact of CO2 leakage from sub-seabed injection and storage.
    Rodríguez-Romero A; Jiménez-Tenorio N; Riba I; Blasco J
    Environ Res; 2016 Jan; 144(Pt A):117-129. PubMed ID: 26599590
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cellular level response of the bivalve Limecola balthica to seawater acidification due to potential CO
    Sokołowski A; Świeżak J; Hallmann A; Olsen AJ; Ziółkowska M; Øverjordet IB; Nordtug T; Altin D; Krause DF; Salaberria I; Smolarz K
    Sci Total Environ; 2021 Nov; 794():148593. PubMed ID: 34323752
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO
    Rastelli E; Corinaldesi C; Dell'Anno A; Amaro T; Greco S; Lo Martire M; Carugati L; Queirós AM; Widdicombe S; Danovaro R
    Mar Environ Res; 2016 Dec; 122():158-168. PubMed ID: 27816195
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of sub-seabed CO
    Amaro T; Bertocci I; Queiros AM; Rastelli E; Borgersen G; Brkljacic M; Nunes J; Sorensen K; Danovaro R; Widdicombe S
    Mar Pollut Bull; 2018 Mar; 128():519-526. PubMed ID: 29571404
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alterations in the macrobenthic fauna from Guadarranque River (Southern Spain) associated with sediment-seawater acidification deriving from CO2 leakage.
    Almagro-Pastor V; Conradi M; DelValls TA; Riba I
    Mar Pollut Bull; 2015 Jul; 96(1-2):65-75. PubMed ID: 26021290
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Climate change mitigation effects: How do potential CO
    Bonnail E; Borrero-Santiago AR; Nordtug T; Øverjordet IB; Krause DF; Ardelan MV
    Chemosphere; 2021 Feb; 264(Pt 2):128552. PubMed ID: 33065323
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differing responses of the estuarine bivalve Limecola balthica to lowered water pH caused by potential CO
    Sokołowski A; Brulińska D; Mirny Z; Burska D; Pryputniewicz-Flis D
    Mar Pollut Bull; 2018 Feb; 127():761-773. PubMed ID: 28987450
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CO2 leaking from sub-seabed storage: Responses of two marine bacteria strains.
    Borrero-Santiago AR; Carbú M; DelValls TÁ; Riba I
    Mar Environ Res; 2016 Oct; 121():2-8. PubMed ID: 27255122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simulating CO
    Díaz-García A; Borrero-Santiago AR; Ángel DelValls T; Riba I
    Mar Pollut Bull; 2017 Mar; 116(1-2):80-86. PubMed ID: 28040253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evaluation of the threat of marine CO2 leakage-associated acidification on the toxicity of sediment metals to juvenile bivalves.
    Basallote MD; Rodríguez-Romero A; De Orte MR; Del Valls TÁ; Riba I
    Aquat Toxicol; 2015 Sep; 166():63-71. PubMed ID: 26240951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Behavioral responses of Arctica islandica (Bivalvia: Arcticidae) to simulated leakages of carbon dioxide from sub-sea geological storage.
    Bamber SD; Westerlund S
    Aquat Toxicol; 2016 Nov; 180():295-305. PubMed ID: 27776295
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Simulating CO₂ leakages from CCS to determine Zn toxicity using the marine microalgae Pleurochrysis roscoffensis.
    Bautista-Chamizo E; De Orte MR; DelValls TÁ; Riba I
    Chemosphere; 2016 Feb; 144():955-65. PubMed ID: 26432538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Lethal effects on different marine organisms, associated with sediment-seawater acidification deriving from CO2 leakage.
    Basallote MD; Rodríguez-Romero A; Blasco J; DelValls A; Riba I
    Environ Sci Pollut Res Int; 2011 Aug; 19(7):2550-60. PubMed ID: 22828884
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Estuarine sediment resuspension and acidification: Release behaviour of contaminants under different oxidation levels and acid sources.
    Martín-Torre MC; Cifrian E; Ruiz G; Galán B; Viguri JR
    J Environ Manage; 2017 Sep; 199():211-221. PubMed ID: 28544927
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulation of CO₂ leakages during injection and storage in sub-seabed geological formations: metal mobilization and biota effects.
    Rodríguez-Romero A; Basallote MD; De Orte MR; DelValls TÁ; Riba I; Blasco J
    Environ Int; 2014 Jul; 68():105-17. PubMed ID: 24721118
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Trace metal mobility in sub-seabed sediments by CO
    Basallote MD; Borrero-Santiago AR; Cánovas CR; Hammer KM; Olsen AJ; Ardelan MV
    Sci Total Environ; 2020 Jan; 700():134761. PubMed ID: 31706093
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Predicting the impacts of CO2 leakage from subseabed storage: effects of metal accumulation and toxicity on the model benthic organism Ruditapes philippinarum.
    Rodríguez-Romero A; Jiménez-Tenorio N; Basallote MD; De Orte MR; Blasco J; Riba I
    Environ Sci Technol; 2014 Oct; 48(20):12292-301. PubMed ID: 25221911
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation of the potential effects of CO2 leakage from carbon capture and storage activities on the mobilization and speciation of metals.
    de Orte MR; Sarmiento AM; DelValls TÁ; Riba I
    Mar Pollut Bull; 2014 Sep; 86(1-2):59-67. PubMed ID: 25125286
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.