BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37142042)

  • 1. Comparative transcriptomic and metabolomic analyses provide insights into the responses to NaCl and Cd stress in Tamarix hispida.
    Xie Q; Liu B; Dong W; Li J; Wang D; Liu Z; Gao C
    Sci Total Environ; 2023 Aug; 884():163889. PubMed ID: 37142042
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic Analysis of Cadmium Stressed
    Wang PL; Lei XJ; Wang YY; Liu BC; Wang DN; Liu ZY; Gao CQ
    Front Plant Sci; 2022; 13():843725. PubMed ID: 35519810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transcriptome and Metabonomic Analysis of
    Chen Y; Zhang S; Du S; Jiang J; Wang G
    Genes (Basel); 2022 Jul; 13(8):. PubMed ID: 35893048
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The multilayered hierarchical gene regulatory network reveals interaction of transcription factors in response to cadmium in Tamarix hispida roots.
    Xie Q; Wang Y; Wang D; Li J; Liu B; Liu Z; Wang P; Zhang H; Yang K; Gao C
    Tree Physiol; 2023 Apr; 43(4):630-642. PubMed ID: 36579818
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A ThDREB gene from Tamarix hispida improved the salt and drought tolerance of transgenic tobacco and T. hispida.
    Yang G; Yu L; Zhang K; Zhao Y; Guo Y; Gao C
    Plant Physiol Biochem; 2017 Apr; 113():187-197. PubMed ID: 28222350
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Tamarix hispida metallothionein-like ThMT3, a reactive oxygen species scavenger, increases tolerance against Cd(2+), Zn(2+), Cu(2+), and NaCl in transgenic yeast.
    Yang J; Wang Y; Liu G; Yang C; Li C
    Mol Biol Rep; 2011 Mar; 38(3):1567-74. PubMed ID: 20835888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of Exogenous (K
    Chen Y; Zhang S; Du S; Wang G; Zhang J; Jiang J
    Genes (Basel); 2022 Oct; 13(10):. PubMed ID: 36292689
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The ethylene response factor gene, ThDRE1A, is involved in abscisic acid- and ethylene-mediated cadmium accumulation in Tamarix hispida.
    Xie Q; Wang D; Ding Y; Gao W; Li J; Cao C; Sun L; Liu Z; Gao C
    Sci Total Environ; 2024 Aug; 937():173422. PubMed ID: 38796019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of Exogenous Potassium (K
    Chen Y; Zhang S; Du S; Zhang X; Wang G; Huang J; Jiang J
    Genes (Basel); 2022 Aug; 13(9):. PubMed ID: 36140675
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Expression analysis of four peroxiredoxin genes from Tamarix hispida in response to different abiotic stresses and Exogenous Abscisic Acid (ABA).
    Gao C; Zhang K; Yang G; Wang Y
    Int J Mol Sci; 2012; 13(3):3751-3764. PubMed ID: 22489180
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Expression profiling of salinity-alkali stress responses by large-scale expressed sequence tag analysis in Tamarix hispid.
    Gao C; Wang Y; Liu G; Yang C; Jiang J; Li H
    Plant Mol Biol; 2008 Feb; 66(3):245-58. PubMed ID: 18058243
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The R2R3-MYB transcription factor ThRAX2 recognized a new element MYB-T (CTTCCA) to enhance cadmium tolerance in Tamarix hispida.
    Wang Y; Wu J; Li J; Liu B; Wang D; Gao C
    Plant Sci; 2023 Apr; 329():111574. PubMed ID: 36565937
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Integrative Physiological and Transcriptome Analysis Reveals the Mechanism of Cd Tolerance in
    Cai M; Yang T; Fang S; Ye L; Gu L; Wang H; Du X; Zhu B; Zeng T; Peng T
    Genes (Basel); 2023 Dec; 14(12):. PubMed ID: 38137046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of genes responsive to salt stress on Tamarix hispida roots.
    Li H; Wang Y; Jiang J; Liu G; Gao C; Yang C
    Gene; 2009 Mar; 433(1-2):65-71. PubMed ID: 19146931
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vacuolar membrane H
    Wang P; Guo Y; Wang Y; Gao C
    Plant Physiol Biochem; 2020 Dec; 157():370-378. PubMed ID: 33190056
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overexpression of ThSAP30BP from Tamarix hispida improves salt tolerance.
    Liu Z; Lei X; Wang P; Wang Y; Lv J; Li X; Gao C
    Plant Physiol Biochem; 2020 Jan; 146():124-132. PubMed ID: 31743857
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cloning and expression analysis of 14 lipid transfer protein genes from Tamarix hispida responding to different abiotic stresses.
    Wang C; Yang C; Gao C; Wang Y
    Tree Physiol; 2009 Dec; 29(12):1607-19. PubMed ID: 19808707
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Analysis of Amino Acids in the Roots of
    Chen Y; Zhang S; Du S; Zhang X; Jiang J; Wang G
    Int J Mol Sci; 2022 Aug; 23(16):. PubMed ID: 36012595
    [TBL] [Abstract][Full Text] [Related]  

  • 19.
    Lei X; Tan B; Liu Z; Wu J; Lv J; Gao C
    Front Plant Sci; 2021; 12():653791. PubMed ID: 34079567
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tamarix hispida zinc finger protein ThZFP1 participates in salt and osmotic stress tolerance by increasing proline content and SOD and POD activities.
    Zang D; Wang C; Ji X; Wang Y
    Plant Sci; 2015 Jun; 235():111-21. PubMed ID: 25900571
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.