These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37142109)

  • 1. Mechanical fatigue testing in silico: Dynamic evolution of material properties of nanoscale biological particles.
    Maksudov F; Kliuchnikov E; Marx KA; Purohit PK; Barsegov V
    Acta Biomater; 2023 Aug; 166():326-345. PubMed ID: 37142109
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluctuating nonlinear spring theory: Strength, deformability, and toughness of biological nanoparticles from theoretical reconstruction of force-deformation spectra.
    Maksudov F; Kononova O; Llauró A; Ortega-Esteban A; Douglas T; Condezo GN; Martín CS; Marx KA; Wuite GJL; Roos WH; de Pablo PJ; Barsegov V
    Acta Biomater; 2021 Mar; 122():263-277. PubMed ID: 33359294
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural transitions and energy landscape for Cowpea Chlorotic Mottle Virus capsid mechanics from nanomanipulation in vitro and in silico.
    Kononova O; Snijder J; Brasch M; Cornelissen J; Dima RI; Marx KA; Wuite GJ; Roos WH; Barsegov V
    Biophys J; 2013 Oct; 105(8):1893-903. PubMed ID: 24138865
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TensorCalculator: exploring the evolution of mechanical stress in the CCMV capsid.
    Kononova O; Maksudov F; Marx KA; Barsegov V
    J Phys Condens Matter; 2018 Jan; 30(4):044006. PubMed ID: 29231176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mechanical fatigue of human red blood cells.
    Qiang Y; Liu J; Dao M; Suresh S; Du E
    Proc Natl Acad Sci U S A; 2019 Oct; 116(40):19828-19834. PubMed ID: 31527252
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Articular cartilage fatigue causes frequency-dependent softening and crack extension.
    Chawla D; Thao AK; Eriten M; Henak CR
    J Mech Behav Biomed Mater; 2024 Dec; 160():106753. PubMed ID: 39369619
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamic fatigue measurement of human erythrocytes using dielectrophoresis.
    Qiang Y; Liu J; Du E
    Acta Biomater; 2017 Jul; 57():352-362. PubMed ID: 28526627
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cyclic mechanical property degradation during fatigue loading of cortical bone.
    Pattin CA; Caler WE; Carter DR
    J Biomech; 1996 Jan; 29(1):69-79. PubMed ID: 8839019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fatigue Crack Growth Analysis under Constant Amplitude Loading Using Finite Element Method.
    Alshoaibi AM
    Materials (Basel); 2022 Apr; 15(8):. PubMed ID: 35454630
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Aspects of in vitro fatigue in human cortical bone: time and cycle dependent crack growth.
    Nalla RK; Kruzic JJ; Kinney JH; Ritchie RO
    Biomaterials; 2005 May; 26(14):2183-95. PubMed ID: 15576194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Energy dissipation in mammalian collagen fibrils: Cyclic strain-induced damping, toughening, and strengthening.
    Liu J; Das D; Yang F; Schwartz AG; Genin GM; Thomopoulos S; Chasiotis I
    Acta Biomater; 2018 Oct; 80():217-227. PubMed ID: 30240954
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Compressive fatigue and fracture toughness behavior of injectable, settable bone cements.
    Harmata AJ; Uppuganti S; Granke M; Guelcher SA; Nyman JS
    J Mech Behav Biomed Mater; 2015 Nov; 51():345-55. PubMed ID: 26282077
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanical properties and energy damage evolution mechanism of fiber-reinforced cemented sulfur tailings backfill under uniaxial compression.
    Liu W; Hou Y; Yin S; Wang Y; Du H; Zhang M
    PLoS One; 2024; 19(1):e0290699. PubMed ID: 38198479
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fatigue behavior of zirconia under different loading conditions.
    Aboushelib MN; Wang H; Kleverlaan CJ; Feilzer AJ
    Dent Mater; 2016 Jul; 32(7):915-20. PubMed ID: 27063462
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fluctuating Nonlinear Spring Model of Mechanical Deformation of Biological Particles.
    Kononova O; Snijder J; Kholodov Y; Marx KA; Wuite GJ; Roos WH; Barsegov V
    PLoS Comput Biol; 2016 Jan; 12(1):e1004729. PubMed ID: 26821264
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fatigue properties of magnesium alloy AZ91 processed by severe plastic deformation.
    Fintová S; Kunz L
    J Mech Behav Biomed Mater; 2015 Feb; 42():219-28. PubMed ID: 25498295
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of the Pull-Out Strength between a Novel Micro-Dynamic Pedicle Screw and a Traditional Pedicle Screw in Lumbar Spine.
    Qian L; Chen W; Li P; Qu D; Liang W; Zheng M; Ouyang J
    Orthop Surg; 2020 Aug; 12(4):1285-1292. PubMed ID: 32776487
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The weak interfaces within tough natural composites: experiments on three types of nacre.
    Khayer Dastjerdi A; Rabiei R; Barthelat F
    J Mech Behav Biomed Mater; 2013 Mar; 19():50-60. PubMed ID: 23084045
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Adaptive structural reorientation: Developing extraordinary mechanical properties by constrained flexibility in natural materials.
    Liu Z; Zhang Y; Zhang M; Tan G; Zhu Y; Zhang Z; Ritchie RO
    Acta Biomater; 2019 Mar; 86():96-108. PubMed ID: 30639350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.