These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

169 related articles for article (PubMed ID: 37142109)

  • 21. High Cycle Fatigue in the Transmission Electron Microscope.
    Bufford DC; Stauffer D; Mook WM; Syed Asif SA; Boyce BL; Hattar K
    Nano Lett; 2016 Aug; 16(8):4946-53. PubMed ID: 27351706
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Microstructural mechanisms of cyclic deformation, fatigue crack initiation and early crack growth.
    Mughrabi H
    Philos Trans A Math Phys Eng Sci; 2015 Mar; 373(2038):. PubMed ID: 25713457
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Tubulin bond energies and microtubule biomechanics determined from nanoindentation in silico.
    Kononova O; Kholodov Y; Theisen KE; Marx KA; Dima RI; Ataullakhanov FI; Grishchuk EL; Barsegov V
    J Am Chem Soc; 2014 Dec; 136(49):17036-45. PubMed ID: 25389565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. In vivo static creep loading of the rat forelimb reduces ulnar structural properties at time-zero and induces damage-dependent woven bone formation.
    Lynch JA; Silva MJ
    Bone; 2008 May; 42(5):942-9. PubMed ID: 18295561
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Ratcheting-fatigue behavior of trabecular bone under cyclic tensile-compressive loading.
    Lin X; Zhao J; Gao L; Zhang C; Gao H
    J Mech Behav Biomed Mater; 2020 Dec; 112():104003. PubMed ID: 32823002
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Finite element modeling of damage accumulation in trabecular bone under cyclic loading.
    Guo XE; McMahon TA; Keaveny TM; Hayes WC; Gibson LJ
    J Biomech; 1994 Feb; 27(2):145-55. PubMed ID: 8132682
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fracture toughness and fatigue crack propagation rate of short fiber reinforced epoxy composites for analogue cortical bone.
    Chong AC; Miller F; Buxton M; Friis EA
    J Biomech Eng; 2007 Aug; 129(4):487-93. PubMed ID: 17655469
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Probing the impact of loading rate on the mechanical properties of viral nanoparticles.
    Snijder J; Ivanovska IL; Baclayon M; Roos WH; Wuite GJ
    Micron; 2012 Dec; 43(12):1343-50. PubMed ID: 22609100
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cyclic fatigue and fracture in pyrolytic carbon-coated graphite mechanical heart-valve prostheses: role of small cracks in life prediction.
    Dauskardt RH; Ritchie RO; Takemoto JK; Brendzel AM
    J Biomed Mater Res; 1994 Jul; 28(7):791-804. PubMed ID: 8083247
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Miniature CoCr laser welds under cyclic shear: Fatigue evolution and crack growth.
    Kanerva M; Besharat Z; Pärnänen T; Jokinen J; Honkanen M; Sarlin E; Göthelid M; Schlenzka D
    J Mech Behav Biomed Mater; 2019 Nov; 99():93-103. PubMed ID: 31349149
    [TBL] [Abstract][Full Text] [Related]  

  • 31. An analysis of crack growth in dentin at the microstructural scale.
    An B; Zhang D
    J Mech Behav Biomed Mater; 2018 May; 81():149-160. PubMed ID: 29522965
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Effects of applied stress ratio on the fatigue behavior of additively manufactured porous biomaterials under compressive loading.
    de Krijger J; Rans C; Van Hooreweder B; Lietaert K; Pouran B; Zadpoor AA
    J Mech Behav Biomed Mater; 2017 Jun; 70():7-16. PubMed ID: 27998687
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Crack initiation from a clinically relevant notch in a highly-crosslinked UHMWPE subjected to static and cyclic loading.
    Sirimamilla A; Rimnac CM
    J Mech Behav Biomed Mater; 2019 Mar; 91():366-372. PubMed ID: 30658250
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Mechanical fatigue fractures bivalve shells.
    Crane RL; Denny MW
    J Exp Biol; 2020 May; 223(Pt 10):. PubMed ID: 32461264
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cartilage-on-cartilage cyclic loading induces mechanical and structural damage.
    Vazquez KJ; Andreae JT; Henak CR
    J Mech Behav Biomed Mater; 2019 Oct; 98():262-267. PubMed ID: 31280053
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Multiscale structure and damage tolerance of coconut shells.
    Gludovatz B; Walsh F; Zimmermann EA; Naleway SE; Ritchie RO; Kruzic JJ
    J Mech Behav Biomed Mater; 2017 Dec; 76():76-84. PubMed ID: 28550972
    [TBL] [Abstract][Full Text] [Related]  

  • 37. High compressive pre-strains reduce the bending fatigue life of nitinol wire.
    Gupta S; Pelton AR; Weaver JD; Gong XY; Nagaraja S
    J Mech Behav Biomed Mater; 2015 Apr; 44():96-108. PubMed ID: 25625888
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fatigue crack propagation under variable amplitude loading in PMMA and bone cement.
    Evans SL
    J Mater Sci Mater Med; 2007 Sep; 18(9):1711-7. PubMed ID: 17483908
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The effects of soft segment structure on the fatigue crack propagation of model polyurethanes.
    Kim HJ; Benson RS
    Biomed Mater Eng; 1994; 4(3):171-85. PubMed ID: 7950866
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Tendons exhibit greater resistance to tissue and molecular-level damage with increasing strain rate during cyclic fatigue.
    Zitnay JL; Lin AH; Weiss JA
    Acta Biomater; 2021 Oct; 134():435-442. PubMed ID: 34314889
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.