BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 37142586)

  • 1. CHRM4/AKT/MYCN upregulates interferon alpha-17 in the tumor microenvironment to promote neuroendocrine differentiation of prostate cancer.
    Wen YC; Tram VTN; Chen WH; Li CH; Yeh HL; Thuy Dung PV; Jiang KC; Li HR; Huang J; Hsiao M; Chen WY; Liu YN
    Cell Death Dis; 2023 May; 14(5):304. PubMed ID: 37142586
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve growth factor interacts with CHRM4 and promotes neuroendocrine differentiation of prostate cancer and castration resistance.
    Chen WY; Wen YC; Lin SR; Yeh HL; Jiang KC; Chen WH; Lin YS; Zhang Q; Liew PL; Hsiao M; Huang J; Liu YN
    Commun Biol; 2021 Jan; 4(1):22. PubMed ID: 33398073
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Targeting PKLR/MYCN/ROMO1 signaling suppresses neuroendocrine differentiation of castration-resistant prostate cancer.
    Chen WY; Thuy Dung PV; Yeh HL; Chen WH; Jiang KC; Li HR; Chen ZQ; Hsiao M; Huang J; Wen YC; Liu YN
    Redox Biol; 2023 Jun; 62():102686. PubMed ID: 36963289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Role of Epigenetic Change in Therapy-Induced Neuroendocrine Prostate Cancer Lineage Plasticity.
    Storck WK; May AM; Westbrook TC; Duan Z; Morrissey C; Yates JA; Alumkal JJ
    Front Endocrinol (Lausanne); 2022; 13():926585. PubMed ID: 35909568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Androgen deprivation-induced ZBTB46-PTGS1 signaling promotes neuroendocrine differentiation of prostate cancer.
    Chen WY; Zeng T; Wen YC; Yeh HL; Jiang KC; Chen WH; Zhang Q; Huang J; Liu YN
    Cancer Lett; 2019 Jan; 440-441():35-46. PubMed ID: 30312731
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Targeting RET Kinase in Neuroendocrine Prostate Cancer.
    VanDeusen HR; Ramroop JR; Morel KL; Bae SY; Sheahan AV; Sychev Z; Lau NA; Cheng LC; Tan VM; Li Z; Petersen A; Lee JK; Park JW; Yang R; Hwang JH; Coleman I; Witte ON; Morrissey C; Corey E; Nelson PS; Ellis L; Drake JM
    Mol Cancer Res; 2020 Aug; 18(8):1176-1188. PubMed ID: 32461304
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The long noncoding RNA H19 regulates tumor plasticity in neuroendocrine prostate cancer.
    Singh N; Ramnarine VR; Song JH; Pandey R; Padi SKR; Nouri M; Olive V; Kobelev M; Okumura K; McCarthy D; Hanna MM; Mukherjee P; Sun B; Lee BR; Parker JB; Chakravarti D; Warfel NA; Zhou M; Bearss JJ; Gibb EA; Alshalalfa M; Karnes RJ; Small EJ; Aggarwal R; Feng F; Wang Y; Buttyan R; Zoubeidi A; Rubin M; Gleave M; Slack FJ; Davicioni E; Beltran H; Collins C; Kraft AS
    Nat Commun; 2021 Dec; 12(1):7349. PubMed ID: 34934057
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Master Neural Transcription Factor BRN2 Is an Androgen Receptor-Suppressed Driver of Neuroendocrine Differentiation in Prostate Cancer.
    Bishop JL; Thaper D; Vahid S; Davies A; Ketola K; Kuruma H; Jama R; Nip KM; Angeles A; Johnson F; Wyatt AW; Fazli L; Gleave ME; Lin D; Rubin MA; Collins CC; Wang Y; Beltran H; Zoubeidi A
    Cancer Discov; 2017 Jan; 7(1):54-71. PubMed ID: 27784708
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MUC1-C regulates lineage plasticity driving progression to neuroendocrine prostate cancer.
    Yasumizu Y; Rajabi H; Jin C; Hata T; Pitroda S; Long MD; Hagiwara M; Li W; Hu Q; Liu S; Yamashita N; Fushimi A; Kui L; Samur M; Yamamoto M; Zhang Y; Zhang N; Hong D; Maeda T; Kosaka T; Wong KK; Oya M; Kufe D
    Nat Commun; 2020 Jan; 11(1):338. PubMed ID: 31953400
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The β
    Braadland PR; Ramberg H; Grytli HH; Urbanucci A; Nielsen HK; Guldvik IJ; Engedal A; Ketola K; Wang W; Svindland A; Mills IG; Bjartell A; Taskén KA
    Mol Cancer Res; 2019 Nov; 17(11):2154-2168. PubMed ID: 31395667
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated ALK Cooperates with N-Myc via Wnt/β-Catenin Signaling to Induce Neuroendocrine Prostate Cancer.
    Unno K; Chalmers ZR; Pamarthy S; Vatapalli R; Rodriguez Y; Lysy B; Mok H; Sagar V; Han H; Yoo YA; Ku SY; Beltran H; Zhao Y; Abdulkadir SA
    Cancer Res; 2021 Apr; 81(8):2157-2170. PubMed ID: 33637566
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Targeting the MYCN-PARP-DNA Damage Response Pathway in Neuroendocrine Prostate Cancer.
    Zhang W; Liu B; Wu W; Li L; Broom BM; Basourakos SP; Korentzelos D; Luan Y; Wang J; Yang G; Park S; Azad AK; Cao X; Kim J; Corn PG; Logothetis CJ; Aparicio AM; Chinnaiyan AM; Navone N; Troncoso P; Thompson TC
    Clin Cancer Res; 2018 Feb; 24(3):696-707. PubMed ID: 29138344
    [No Abstract]   [Full Text] [Related]  

  • 13. Role of PI3K-AKT-mTOR Pathway as a Pro-Survival Signaling and Resistance-Mediating Mechanism to Therapy of Prostate Cancer.
    Pungsrinont T; Kallenbach J; Baniahmad A
    Int J Mol Sci; 2021 Oct; 22(20):. PubMed ID: 34681745
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Drug Repurposing Screen Identifies Fludarabine Phosphate as a Potential Therapeutic Agent for N-MYC Overexpressing Neuroendocrine Prostate Cancers.
    Elhasasna H; Khan R; Bhanumathy KK; Vizeacoumar FS; Walke P; Bautista M; Dahiya DK; Maranda V; Patel H; Balagopal A; Alli N; Krishnan A; Freywald A; Vizeacoumar FJ
    Cells; 2022 Jul; 11(14):. PubMed ID: 35883689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Fascin-1 expression is associated with neuroendocrine prostate cancer and directly suppressed by androgen receptor.
    Turpin A; Delliaux C; Parent P; Chevalier H; Escudero-Iriarte C; Bonardi F; Vanpouille N; Flourens A; Querol J; Carnot A; Leroy X; Herranz N; Lanel T; Villers A; Olivier J; Touzet H; de Launoit Y; Tian TV; Duterque-Coquillaud M
    Br J Cancer; 2023 Dec; 129(12):1903-1914. PubMed ID: 37875732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Lineage plasticity and treatment resistance in prostate cancer: the intersection of genetics, epigenetics, and evolution.
    Imamura J; Ganguly S; Muskara A; Liao RS; Nguyen JK; Weight C; Wee CE; Gupta S; Mian OY
    Front Endocrinol (Lausanne); 2023; 14():1191311. PubMed ID: 37455903
    [TBL] [Abstract][Full Text] [Related]  

  • 17. N-Myc-mediated epigenetic reprogramming drives lineage plasticity in advanced prostate cancer.
    Berger A; Brady NJ; Bareja R; Robinson B; Conteduca V; Augello MA; Puca L; Ahmed A; Dardenne E; Lu X; Hwang I; Bagadion AM; Sboner A; Elemento O; Paik J; Yu J; Barbieri CE; Dephoure N; Beltran H; Rickman DS
    J Clin Invest; 2019 Jul; 129(9):3924-3940. PubMed ID: 31260412
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PARP Inhibition Suppresses GR-MYCN-CDK5-RB1-E2F1 Signaling and Neuroendocrine Differentiation in Castration-Resistant Prostate Cancer.
    Liu B; Li L; Yang G; Geng C; Luo Y; Wu W; Manyam GC; Korentzelos D; Park S; Tang Z; Wu C; Dong Z; Sigouros M; Sboner A; Beltran H; Chen Y; Corn PG; Tetzlaff MT; Troncoso P; Broom B; Thompson TC
    Clin Cancer Res; 2019 Nov; 25(22):6839-6851. PubMed ID: 31439587
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temporal evolution of cellular heterogeneity during the progression to advanced AR-negative prostate cancer.
    Brady NJ; Bagadion AM; Singh R; Conteduca V; Van Emmenis L; Arceci E; Pakula H; Carelli R; Khani F; Bakht M; Sigouros M; Bareja R; Sboner A; Elemento O; Tagawa S; Nanus DM; Loda M; Beltran H; Robinson B; Rickman DS
    Nat Commun; 2021 Jun; 12(1):3372. PubMed ID: 34099734
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Inhibiting geranylgeranyl diphosphate synthesis reduces nuclear androgen receptor signaling and neuroendocrine differentiation in prostate cancer cell models.
    Weissenrieder JS; Reilly JE; Neighbors JD; Hohl RJ
    Prostate; 2019 Jan; 79(1):21-30. PubMed ID: 30106164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.