These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 37142667)

  • 1. M1 acetylcholine receptors in somatostatin interneurons contribute to GABAergic and glutamatergic plasticity in the mPFC and antidepressant-like responses.
    Fogaça MV; Wu M; Li C; Li XY; Duman RS; Picciotto MR
    Neuropsychopharmacology; 2023 Aug; 48(9):1277-1287. PubMed ID: 37142667
    [TBL] [Abstract][Full Text] [Related]  

  • 2. GABA interneurons mediate the rapid antidepressant-like effects of scopolamine.
    Wohleb ES; Wu M; Gerhard DM; Taylor SR; Picciotto MR; Alreja M; Duman RS
    J Clin Invest; 2016 Jul; 126(7):2482-94. PubMed ID: 27270172
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of GABA interneurons in the mPFC is sufficient and necessary for rapid antidepressant responses.
    Fogaça MV; Wu M; Li C; Li XY; Picciotto MR; Duman RS
    Mol Psychiatry; 2021 Jul; 26(7):3277-3291. PubMed ID: 33070149
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Disinhibition of somatostatin-positive GABAergic interneurons results in an anxiolytic and antidepressant-like brain state.
    Fuchs T; Jefferson SJ; Hooper A; Yee PH; Maguire J; Luscher B
    Mol Psychiatry; 2017 Jun; 22(6):920-930. PubMed ID: 27821870
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cell-type-specific synaptic modulation of mAChR on SST and PV interneurons.
    Chen H; He T; Li M; Wang C; Guo C; Wang W; Yu B; Huang J; Cui L; Guo P; Yuan Y; Tan T
    Front Psychiatry; 2022; 13():1070478. PubMed ID: 36713928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A Key Role for Prefrontocortical Small Conductance Calcium-Activated Potassium Channels in Stress Adaptation and Rapid Antidepressant Response.
    Bambico FR; Li Z; Creed M; De Gregorio D; Diwan M; Li J; McNeill S; Gobbi G; Raymond R; Nobrega JN
    Cereb Cortex; 2020 Mar; 30(3):1559-1572. PubMed ID: 31504265
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rapid antidepressant actions of scopolamine: Role of medial prefrontal cortex and M1-subtype muscarinic acetylcholine receptors.
    Navarria A; Wohleb ES; Voleti B; Ota KT; Dutheil S; Lepack AE; Dwyer JM; Fuchikami M; Becker A; Drago F; Duman RS
    Neurobiol Dis; 2015 Oct; 82():254-261. PubMed ID: 26102021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. GABA interneurons are the cellular trigger for ketamine's rapid antidepressant actions.
    Gerhard DM; Pothula S; Liu RJ; Wu M; Li XY; Girgenti MJ; Taylor SR; Duman CH; Delpire E; Picciotto M; Wohleb ES; Duman RS
    J Clin Invest; 2020 Mar; 130(3):1336-1349. PubMed ID: 31743111
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Disinhibition of somatostatin interneurons confers resilience to stress in male but not female mice.
    Jefferson SJ; Feng M; Chon U; Guo Y; Kim Y; Luscher B
    Neurobiol Stress; 2020 Nov; 13():100238. PubMed ID: 33344694
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Activity-Dependent Brain-Derived Neurotrophic Factor Release Is Required for the Rapid Antidepressant Actions of Scopolamine.
    Ghosal S; Bang E; Yue W; Hare BD; Lepack AE; Girgenti MJ; Duman RS
    Biol Psychiatry; 2018 Jan; 83(1):29-37. PubMed ID: 28751069
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular and Cellular Mechanisms of Rapid-Acting Antidepressants Ketamine and Scopolamine.
    Wohleb ES; Gerhard D; Thomas A; Duman RS
    Curr Neuropharmacol; 2017; 15(1):11-20. PubMed ID: 26955968
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute restraint stress redirects prefrontal cortex circuit function through mGlu
    Joffe ME; Maksymetz J; Luschinger JR; Dogra S; Ferranti AS; Luessen DJ; Gallinger IM; Xiang Z; Branthwaite H; Melugin PR; Williford KM; Centanni SW; Shields BC; Lindsley CW; Calipari ES; Siciliano CA; Niswender CM; Tadross MR; Winder DG; Conn PJ
    Neuron; 2022 Mar; 110(6):1068-1083.e5. PubMed ID: 35045338
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Positive modulation of NMDA receptors by AGN-241751 exerts rapid antidepressant-like effects via excitatory neurons.
    Pothula S; Liu RJ; Wu M; Sliby AN; Picciotto MR; Banerjee P; Duman RS
    Neuropsychopharmacology; 2021 Mar; 46(4):799-808. PubMed ID: 33059355
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Immunolocalization of muscarinic M1 receptor in the rat medial prefrontal cortex.
    Oda S; Tsuneoka Y; Yoshida S; Adachi-Akahane S; Ito M; Kuroda M; Funato H
    J Comp Neurol; 2018 Jun; 526(8):1329-1350. PubMed ID: 29424434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Therapeutic Effect of Novel Antidepressant Drugs Acting at Specific Receptors of Neurotransmitters and Neuropeptides.
    Werner FM; Coveñas R
    Curr Pharm Des; 2019; 25(4):388-395. PubMed ID: 30969164
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Baihe Dihuang (Lilium Henryi Baker and Rehmannia Glutinosa) decoction attenuates somatostatin interneurons deficits in prefrontal cortex of depression via miRNA-144-3p mediated GABA synthesis and release.
    Xue X; Pan J; Zhang H; Lu Y; Mao Q; Ma K
    J Ethnopharmacol; 2022 Jun; 292():115218. PubMed ID: 35337919
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Somatostatin contributes to long-term potentiation at excitatory synapses onto hippocampal somatostatinergic interneurons.
    Racine AS; Michon FX; Laplante I; Lacaille JC
    Mol Brain; 2021 Aug; 14(1):130. PubMed ID: 34429141
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Behavioral Deficits Induced by Somatostatin-Positive GABA Neuron Silencing Are Rescued by Alpha 5 GABA-A Receptor Potentiation.
    Fee C; Prevot TD; Misquitta K; Knutson DE; Li G; Mondal P; Cook JM; Banasr M; Sibille E
    Int J Neuropsychopharmacol; 2021 Jul; 24(6):505-518. PubMed ID: 33438026
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition.
    Yi F; Ball J; Stoll KE; Satpute VC; Mitchell SM; Pauli JL; Holloway BB; Johnston AD; Nathanson NM; Deisseroth K; Gerber DJ; Tonegawa S; Lawrence JJ
    J Physiol; 2014 Aug; 592(16):3463-94. PubMed ID: 24879872
    [TBL] [Abstract][Full Text] [Related]  

  • 20. T-type Ca
    Luo F; Wang T; Deng JY; Luo XD
    Exp Neurol; 2023 Jan; 359():114250. PubMed ID: 36240882
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.