These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

171 related articles for article (PubMed ID: 37142751)

  • 1. A Wox3-patterning module organizes planar growth in grass leaves and ligules.
    Satterlee JW; Evans LJ; Conlon BR; Conklin P; Martinez-Gomez J; Yen JR; Wu H; Sylvester AW; Specht CD; Cheng J; Johnston R; Coen E; Scanlon MJ
    Nat Plants; 2023 May; 9(5):720-732. PubMed ID: 37142751
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Transcriptomic analyses indicate that maize ligule development recapitulates gene expression patterns that occur during lateral organ initiation.
    Johnston R; Wang M; Sun Q; Sylvester AW; Hake S; Scanlon MJ
    Plant Cell; 2014 Dec; 26(12):4718-32. PubMed ID: 25516601
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Network analyses identify a transcriptomic proximodistal prepattern in the maize leaf primordium.
    Leiboff S; Strable J; Johnston R; Federici S; Sylvester AW; Scanlon MJ
    New Phytol; 2021 Apr; 230(1):218-227. PubMed ID: 33280125
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic analyses of embryo homology and ontogeny in the model grass Zea mays subsp. mays.
    Wu H; Zhang R; Scanlon MJ
    New Phytol; 2024 Aug; 243(4):1610-1619. PubMed ID: 38924134
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Maize
    Muszynski MG; Moss-Taylor L; Chudalayandi S; Cahill J; Del Valle-Echevarria AR; Alvarez-Castro I; Petefish A; Sakakibara H; Krivosheev DM; Lomin SN; Romanov GA; Thamotharan S; Dam T; Li B; Brugière N
    Plant Cell; 2020 May; 32(5):1501-1518. PubMed ID: 32205456
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sectors expressing the homeobox gene liguleless3 implicate a time-dependent mechanism for cell fate acquisition along the proximal-distal axis of the maize leaf.
    Muehlbauer GJ; Fowler JE; Freeling M
    Development; 1997 Dec; 124(24):5097-106. PubMed ID: 9362467
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A WUSCHEL-LIKE HOMEOBOX gene represses a YABBY gene expression required for rice leaf development.
    Dai M; Hu Y; Zhao Y; Liu H; Zhou DX
    Plant Physiol; 2007 May; 144(1):380-90. PubMed ID: 17351053
    [TBL] [Abstract][Full Text] [Related]  

  • 8. LEAF LATERAL SYMMETRY1, a Member of the WUSCHEL-RELATED HOMEOBOX3 Gene Family, Regulates Lateral Organ Development Differentially from Other Paralogs, NARROW LEAF2 and NARROW LEAF3 in Rice.
    Honda E; Yew CL; Yoshikawa T; Sato Y; Hibara KI; Itoh JI
    Plant Cell Physiol; 2018 Feb; 59(2):376-391. PubMed ID: 29272531
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Plant homeodomain proteins provide a mechanism for how leaves grow wide.
    Conklin PA; Johnston R; Conlon BR; Shimizu R; Scanlon MJ
    Development; 2020 Oct; 147(20):. PubMed ID: 32994171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Keep on growing: building and patterning leaves in the grasses.
    Lewis MW; Hake S
    Curr Opin Plant Biol; 2016 Feb; 29():80-6. PubMed ID: 26751036
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The milkweed pod1 gene encodes a KANADI protein that is required for abaxial/adaxial patterning in maize leaves.
    Candela H; Johnston R; Gerhold A; Foster T; Hake S
    Plant Cell; 2008 Aug; 20(8):2073-87. PubMed ID: 18757553
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mosaic analysis of the dominant mutant, Gnarley1-R, reveals distinct lateral and transverse signaling pathways during maize leaf development.
    Foster T; Veit B; Hake S
    Development; 1999 Jan; 126(2):305-13. PubMed ID: 9847244
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hormonal control of medial-lateral growth and vein formation in the maize leaf.
    Robil JM; McSteen P
    New Phytol; 2023 Apr; 238(1):125-141. PubMed ID: 36404129
    [TBL] [Abstract][Full Text] [Related]  

  • 14. WOX gene phylogeny in Poaceae: a comparative approach addressing leaf and embryo development.
    Nardmann J; Zimmermann R; Durantini D; Kranz E; Werr W
    Mol Biol Evol; 2007 Nov; 24(11):2474-84. PubMed ID: 17768306
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The liguleless-1 gene acts tissue specifically in maize leaf development.
    Becraft PW; Bongard-Pierce DK; Sylvester AW; Poethig RS; Freeling M
    Dev Biol; 1990 Sep; 141(1):220-32. PubMed ID: 2391003
    [TBL] [Abstract][Full Text] [Related]  

  • 16. How to pattern a leaf.
    Bolduc N; O'Connor D; Moon J; Lewis M; Hake S
    Cold Spring Harb Symp Quant Biol; 2012; 77():47-51. PubMed ID: 23174765
    [TBL] [Abstract][Full Text] [Related]  

  • 17. liguleless1 encodes a nuclear-localized protein required for induction of ligules and auricles during maize leaf organogenesis.
    Moreno MA; Harper LC; Krueger RW; Dellaporta SL; Freeling M
    Genes Dev; 1997 Mar; 11(5):616-28. PubMed ID: 9119226
    [TBL] [Abstract][Full Text] [Related]  

  • 18.
    Okagaki RJ; Haaning A; Bilgic H; Heinen S; Druka A; Bayer M; Waugh R; Muehlbauer GJ
    Plant Physiol; 2018 Apr; 176(4):2750-2760. PubMed ID: 29440592
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The establishment of axial patterning in the maize leaf.
    Foster T; Hay A; Johnston R; Hake S
    Development; 2004 Aug; 131(16):3921-9. PubMed ID: 15253937
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The dynamics of maize leaf development: Patterned to grow while growing a pattern.
    Strable J; Nelissen H
    Curr Opin Plant Biol; 2021 Oct; 63():102038. PubMed ID: 33940553
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.