These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 37142929)

  • 41. Cell-Based Assay Design for High-Content Screening of Drug Candidates.
    Nierode G; Kwon PS; Dordick JS; Kwon SJ
    J Microbiol Biotechnol; 2016 Feb; 26(2):213-25. PubMed ID: 26428732
    [TBL] [Abstract][Full Text] [Related]  

  • 42. ARQiv-HTS, a versatile whole-organism screening platform enabling in vivo drug discovery at high-throughput rates.
    White DT; Eroglu AU; Wang G; Zhang L; Sengupta S; Ding D; Rajpurohit SK; Walker SL; Ji H; Qian J; Mumm JS
    Nat Protoc; 2016 Dec; 11(12):2432-2453. PubMed ID: 27831568
    [TBL] [Abstract][Full Text] [Related]  

  • 43. High-throughput viability assay using an autonomously bioluminescent cell line with a bacterial Lux reporter.
    Class B; Thorne N; Aguisanda F; Southall N; McKew JC; Zheng W
    J Lab Autom; 2015 Apr; 20(2):164-74. PubMed ID: 25447977
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Modulation of Threat Response in Larval Zebrafish.
    Rennekamp AJ
    Methods Mol Biol; 2018; 1787():147-159. PubMed ID: 29736716
    [TBL] [Abstract][Full Text] [Related]  

  • 45. High-throughput cell death assays.
    Pamenter ME; Haddad GG
    Methods Mol Biol; 2015; 1254():153-63. PubMed ID: 25431064
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Designing, optimizing, and implementing high-throughput siRNA genomic screening with glioma cells for the discovery of survival genes and novel drug targets.
    Thaker NG; McDonald PR; Zhang F; Kitchens CA; Shun TY; Pollack IF; Lazo JS
    J Neurosci Methods; 2010 Jan; 185(2):204-12. PubMed ID: 19782703
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The zebrafish: a powerful platform for in vivo, HTS drug discovery.
    Delvecchio C; Tiefenbach J; Krause HM
    Assay Drug Dev Technol; 2011 Aug; 9(4):354-61. PubMed ID: 21309713
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation.
    Struzyna LA; Watt ML
    Mol Pharmacol; 2021 Apr; 99(4):256-265. PubMed ID: 33547249
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Development of a Fluorescence-based Trypanosoma cruzi CYP51 Inhibition Assay for Effective Compound Triaging in Drug Discovery Programmes for Chagas Disease.
    Riley J; Brand S; Voice M; Caballero I; Calvo D; Read KD
    PLoS Negl Trop Dis; 2015 Sep; 9(9):e0004014. PubMed ID: 26394211
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Fluorescence/luminescence-based markers for the assessment of Schistosoma mansoni schistosomula drug assays.
    Panic G; Flores D; Ingram-Sieber K; Keiser J
    Parasit Vectors; 2015 Dec; 8():624. PubMed ID: 26644133
    [TBL] [Abstract][Full Text] [Related]  

  • 51. High throughput screening for anti-Trypanosoma cruzi drug discovery.
    Alonso-Padilla J; Rodríguez A
    PLoS Negl Trop Dis; 2014 Dec; 8(12):e3259. PubMed ID: 25474364
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Knowledge-Based Approaches to Off-Target Screening.
    McMasters DR
    Methods Enzymol; 2018; 610():311-323. PubMed ID: 30390804
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Identification of a novel sulfonamide non-nucleoside reverse transcriptase inhibitor by a phenotypic HIV-1 full replication assay.
    Kim TH; Ko Y; Christophe T; Cechetto J; Kim J; Kim KA; Boese AS; Garcia JM; Fenistein D; Ju MK; Kim J; Han SJ; Kwon HJ; Brondani V; Sommer P
    PLoS One; 2013; 8(7):e68767. PubMed ID: 23874756
    [TBL] [Abstract][Full Text] [Related]  

  • 54. A Unique Dual-Readout High-Throughput Screening Assay To Identify Antifungal Compounds with Aspergillus fumigatus.
    Beattie SR; Krysan DJ
    mSphere; 2021 Aug; 6(4):e0053921. PubMed ID: 34406854
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Cell-based fuzzy metrics enhance high-content screening (HCS) assay robustness.
    Azegrouz H; Karemore G; Torres A; Alaíz CM; Gonzalez AM; Nevado P; Salmerón A; Pellinen T; del Pozo MA; Dorronsoro JR; Montoya MC
    J Biomol Screen; 2013 Dec; 18(10):1270-83. PubMed ID: 24045580
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Primary cells and stem cells in drug discovery: emerging tools for high-throughput screening.
    Eglen R; Reisine T
    Assay Drug Dev Technol; 2011 Apr; 9(2):108-24. PubMed ID: 21186936
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Image-Based Annotation of Chemogenomic Libraries for Phenotypic Screening.
    Tjaden A; Chaikuad A; Kowarz E; Marschalek R; Knapp S; Schröder M; Müller S
    Molecules; 2022 Feb; 27(4):. PubMed ID: 35209227
    [TBL] [Abstract][Full Text] [Related]  

  • 58. A High-Throughput Dose-Response Cellular Thermal Shift Assay for Rapid Screening of Drug Target Engagement in Living Cells, Exemplified Using SMYD3 and IDO1.
    McNulty DE; Bonnette WG; Qi H; Wang L; Ho TF; Waszkiewicz A; Kallal LA; Nagarajan RP; Stern M; Quinn AM; Creasy CL; Su DS; Graves AP; Annan RS; Sweitzer SM; Holbert MA
    SLAS Discov; 2018 Jan; 23(1):34-46. PubMed ID: 28957646
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Label-free high-throughput screening via mass spectrometry: a single cystathionine quantitative method for multiple applications.
    Holt TG; Choi BK; Geoghagen NS; Jensen KK; Luo Q; LaMarr WA; Makara GM; Malkowitz L; Ozbal CC; Xiong Y; Dufresne C; Luo MJ
    Assay Drug Dev Technol; 2009 Oct; 7(5):495-506. PubMed ID: 19715455
    [TBL] [Abstract][Full Text] [Related]  

  • 60. waveRAPID-A Robust Assay for High-Throughput Kinetic Screens with the Creoptix WAVEsystem.
    Kartal Ö; Andres F; Lai MP; Nehme R; Cottier K
    SLAS Discov; 2021 Sep; 26(8):995-1003. PubMed ID: 34049465
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.