These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

149 related articles for article (PubMed ID: 37142929)

  • 61. Identification of Antipneumococcal Molecules Effective Against Different Streptococcus pneumoniae Serotypes Using a Resazurin-Based High-Throughput Screen.
    Kim HJ; Kim N; Shum D; Huddar S; Park CM; Jang S
    Assay Drug Dev Technol; 2017 Jul; 15(5):198-209. PubMed ID: 28723269
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Screening methods for influenza antiviral drug discovery.
    Atkins C; Evans CW; White EL; Noah JW
    Expert Opin Drug Discov; 2012 May; 7(5):429-38. PubMed ID: 22435452
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Automation of a phospho-STAT5 staining procedure for flow cytometry for application in drug discovery.
    Malergue F; van Agthoven A; Scifo C; Egan D; Strous GJ
    J Biomol Screen; 2015 Mar; 20(3):416-21. PubMed ID: 25325258
    [TBL] [Abstract][Full Text] [Related]  

  • 64. A 1536-Well 3D Viability Assay to Assess the Cytotoxic Effect of Drugs on Spheroids.
    Madoux F; Tanner A; Vessels M; Willetts L; Hou S; Scampavia L; Spicer TP
    SLAS Discov; 2017 Jun; 22(5):516-524. PubMed ID: 28346088
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Chemical screening in zebrafish for novel biological and therapeutic discovery.
    Tan JL; Zon LI
    Methods Cell Biol; 2011; 105():493-516. PubMed ID: 21951544
    [TBL] [Abstract][Full Text] [Related]  

  • 66. A sandwiched microarray platform for benchtop cell-based high throughput screening.
    Wu J; Wheeldon I; Guo Y; Lu T; Du Y; Wang B; He J; Hu Y; Khademhosseini A
    Biomaterials; 2011 Jan; 32(3):841-8. PubMed ID: 20965560
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Antiobesity Drug Discovery Research:
    Radheshyam ; Gauniya P; Semalty M; Semalty A
    Curr Drug Targets; 2024; 25(6):388-403. PubMed ID: 38500275
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Two low complexity ultra-high throughput methods to identify diverse chemically bioactive molecules using Saccharomyces cerevisiae.
    Petrovic K; Pfeifer M; Parker CN; Schuierer S; Tallarico J; Hoepfner D; Movva NR; Scheel G; Helliwell SB
    Microbiol Res; 2017 Jun; 199():10-18. PubMed ID: 28454705
    [TBL] [Abstract][Full Text] [Related]  

  • 69. [High-throughput Screening Technology for Selective Inhibitors of Transporters and Its Application in Drug Discovery].
    Motoyaji T
    Yakugaku Zasshi; 2021; 141(4):511-515. PubMed ID: 33790118
    [TBL] [Abstract][Full Text] [Related]  

  • 70. A natural products approach to drug discovery: probing modes of action of antitumor agents by genome-scale cDNA library screening.
    Luesch H; Abreu P
    Methods Mol Biol; 2009; 572():261-77. PubMed ID: 20694698
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Expediting Antibody Discovery with a Cell and Bead Multiplexed Competition Assay.
    Liu Z; O'Rourke J
    SLAS Discov; 2018 Aug; 23(7):667-675. PubMed ID: 29852084
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Real-Time Apoptosis and Viability High-Throughput Screening of 3D Multicellular Tumor Spheroids Using the Celigo Image Cytometer.
    Kessel S; Cribbes S; Bonasu S; Qiu J; Chan LL
    SLAS Discov; 2018 Feb; 23(2):202-210. PubMed ID: 28915356
    [TBL] [Abstract][Full Text] [Related]  

  • 73. High-Throughput 3D Tumor Spheroid Screening Method for Cancer Drug Discovery Using Celigo Image Cytometry.
    Kessel S; Cribbes S; Déry O; Kuksin D; Sincoff E; Qiu J; Chan LL
    SLAS Technol; 2017 Aug; 22(4):454-465. PubMed ID: 27272155
    [TBL] [Abstract][Full Text] [Related]  

  • 74. High-Throughput Screening: today's biochemical and cell-based approaches.
    Blay V; Tolani B; Ho SP; Arkin MR
    Drug Discov Today; 2020 Oct; 25(10):1807-1821. PubMed ID: 32801051
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Scalable Production of iPSC-Derived Human Neurons to Identify Tau-Lowering Compounds by High-Content Screening.
    Wang C; Ward ME; Chen R; Liu K; Tracy TE; Chen X; Xie M; Sohn PD; Ludwig C; Meyer-Franke A; Karch CM; Ding S; Gan L
    Stem Cell Reports; 2017 Oct; 9(4):1221-1233. PubMed ID: 28966121
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cell-Based No-Wash Fluorescence Assays for Compound Screens Using a Fluorescence Cytometry Plate Reader.
    Gorshkov K; Pradhan M; Xu M; Yang S; Lee EM; Chen CZ; Shen M; Zheng W
    J Pharmacol Exp Ther; 2020 Sep; 374(3):500-511. PubMed ID: 32532853
    [TBL] [Abstract][Full Text] [Related]  

  • 77. The why and how of phenotypic small-molecule screens.
    Eggert US
    Nat Chem Biol; 2013 Apr; 9(4):206-9. PubMed ID: 23508174
    [No Abstract]   [Full Text] [Related]  

  • 78. [Screening methods for ion-channels drug discovery and new ideas].
    Fujii M; Ohya S; Yamamura H; Imaizumi Y
    Nihon Yakurigaku Zasshi; 2011 Dec; 138(6):229-33. PubMed ID: 22156258
    [No Abstract]   [Full Text] [Related]  

  • 79. A High-Throughput Image Cytometry Method for the Formation, Morphometric, and Viability Analysis of Drug-Treated Mammospheres.
    Kessel SL; Chan LL
    SLAS Discov; 2020 Aug; 25(7):723-733. PubMed ID: 32396489
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Using Functional Genetics in Haploid Cells for Drug Target Identification.
    Volz JC; Schuller N; Elling U
    Methods Mol Biol; 2019; 1953():3-21. PubMed ID: 30912012
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.