These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
444 related articles for article (PubMed ID: 37143048)
1. A dosing strategy model of deep deterministic policy gradient algorithm for sepsis patients. Lin T; Zhang X; Gong J; Tan R; Li W; Wang L; Pan Y; Xu X; Gao J BMC Med Inform Decis Mak; 2023 May; 23(1):81. PubMed ID: 37143048 [TBL] [Abstract][Full Text] [Related]
2. Learning dynamic treatment strategies for coronary heart diseases by artificial intelligence: real-world data-driven study. Guo H; Li J; Liu H; He J BMC Med Inform Decis Mak; 2022 Feb; 22(1):39. PubMed ID: 35168623 [TBL] [Abstract][Full Text] [Related]
3. The development an artificial intelligence algorithm for early sepsis diagnosis in the intensive care unit. Yuan KC; Tsai LW; Lee KH; Cheng YW; Hsu SC; Lo YS; Chen RJ Int J Med Inform; 2020 Sep; 141():104176. PubMed ID: 32485555 [TBL] [Abstract][Full Text] [Related]
4. Reinforcement Learning to Optimize Ventilator Settings for Patients on Invasive Mechanical Ventilation: Retrospective Study. Liu S; Xu Q; Xu Z; Liu Z; Sun X; Xie G; Feng M; See KC J Med Internet Res; 2024 Oct; 26():e44494. PubMed ID: 39219230 [TBL] [Abstract][Full Text] [Related]
5. The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care. Komorowski M; Celi LA; Badawi O; Gordon AC; Faisal AA Nat Med; 2018 Nov; 24(11):1716-1720. PubMed ID: 30349085 [TBL] [Abstract][Full Text] [Related]
6. Assuring the safety of AI-based clinical decision support systems: a case study of the AI Clinician for sepsis treatment. Festor P; Jia Y; Gordon AC; Faisal AA; Habli I; Komorowski M BMJ Health Care Inform; 2022 Jul; 29(1):. PubMed ID: 35851286 [TBL] [Abstract][Full Text] [Related]
8. Using artificial intelligence to predict adverse outcomes in emergency department patients with hyperglycemic crises in real time. Hsu CC; Kao Y; Hsu CC; Chen CJ; Hsu SL; Liu TL; Lin HJ; Wang JJ; Liu CF; Huang CC BMC Endocr Disord; 2023 Oct; 23(1):234. PubMed ID: 37872536 [TBL] [Abstract][Full Text] [Related]
9. Development and Validation of an Interpretable Conformal Predictor to Predict Sepsis Mortality Risk: Retrospective Cohort Study. Yang M; Chen H; Hu W; Mischi M; Shan C; Li J; Long X; Liu C J Med Internet Res; 2024 Mar; 26():e50369. PubMed ID: 38498038 [TBL] [Abstract][Full Text] [Related]
10. Learning to predict in-hospital mortality risk in the intensive care unit with attention-based temporal convolution network. Chen YW; Li YJ; Deng P; Yang ZY; Zhong KH; Zhang LG; Chen Y; Zhi HY; Hu XY; Gu JT; Ning JL; Lu KZ; Zhang J; Xia ZY; Qin XL; Yi B BMC Anesthesiol; 2022 Apr; 22(1):119. PubMed ID: 35461225 [TBL] [Abstract][Full Text] [Related]
11. A novel artificial intelligence based intensive care unit monitoring system: using physiological waveforms to identify sepsis. Mollura M; Lehman LH; Mark RG; Barbieri R Philos Trans A Math Phys Eng Sci; 2021 Dec; 379(2212):20200252. PubMed ID: 34689614 [TBL] [Abstract][Full Text] [Related]
12. Improvements in Patient Monitoring in the Intensive Care Unit: Survey Study. Poncette AS; Mosch L; Spies C; Schmieding M; Schiefenhövel F; Krampe H; Balzer F J Med Internet Res; 2020 Jun; 22(6):e19091. PubMed ID: 32459655 [TBL] [Abstract][Full Text] [Related]
13. Establishment and Implementation of Potential Fluid Therapy Balance Strategies for ICU Sepsis Patients Based on Reinforcement Learning. Su L; Li Y; Liu S; Zhang S; Zhou X; Weng L; Su M; Du B; Zhu W; Long Y Front Med (Lausanne); 2022; 9():766447. PubMed ID: 35492326 [TBL] [Abstract][Full Text] [Related]
14. Optimization of news dissemination push mode by intelligent edge computing technology for deep learning. DeGe J; Sang S Sci Rep; 2024 Mar; 14(1):6671. PubMed ID: 38509163 [TBL] [Abstract][Full Text] [Related]
15. Intricacies of Human-AI Interaction in Dynamic Decision-Making for Precision Oncology: A Case Study in Response-Adaptive Radiotherapy. Niraula D; Cuneo KC; Dinov ID; Gonzalez BD; Jamaluddin JB; Jin JJ; Luo Y; Matuszak MM; Ten Haken RK; Bryant AK; Dilling TJ; Dykstra MP; Frakes JM; Liveringhouse CL; Miller SR; Mills MN; Palm RF; Regan SN; Rishi A; Torres-Roca JF; Yu HM; El Naqa I medRxiv; 2024 Apr; ():. PubMed ID: 38746238 [TBL] [Abstract][Full Text] [Related]
16. Enhancing Patient Selection in Sepsis Clinical Trials Design Through an AI Enrichment Strategy: Algorithm Development and Validation. Yang M; Zhuang J; Hu W; Li J; Wang Y; Zhang Z; Liu C; Chen H J Med Internet Res; 2024 Sep; 26():e54621. PubMed ID: 39231425 [TBL] [Abstract][Full Text] [Related]
17. Clinical knowledge-guided deep reinforcement learning for sepsis antibiotic dosing recommendations. Wang Y; Liu A; Yang J; Wang L; Xiong N; Cheng Y; Wu Q Artif Intell Med; 2024 Apr; 150():102811. PubMed ID: 38553154 [TBL] [Abstract][Full Text] [Related]
18. Approximate Policy-Based Accelerated Deep Reinforcement Learning. Wang X; Gu Y; Cheng Y; Liu A; Chen CLP IEEE Trans Neural Netw Learn Syst; 2020 Jun; 31(6):1820-1830. PubMed ID: 31398131 [TBL] [Abstract][Full Text] [Related]
19. Rethinking Human-AI Collaboration in Complex Medical Decision Making: A Case Study in Sepsis Diagnosis. Zhang S; Yu J; Xu X; Yin C; Lu Y; Yao B; Tory M; Padilla LM; Caterino J; Zhang P; Wang D Proc SIGCHI Conf Hum Factor Comput Syst; 2024 May; 2024():. PubMed ID: 38835626 [TBL] [Abstract][Full Text] [Related]
20. Safety and Efficacy of Imatinib for Hospitalized Adults with COVID-19: A structured summary of a study protocol for a randomised controlled trial. Emadi A; Chua JV; Talwani R; Bentzen SM; Baddley J Trials; 2020 Oct; 21(1):897. PubMed ID: 33115543 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]