These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 37143057)

  • 21. Alpha Frequency Intervention by Electrical Stimulation to Improve Performance in Mu-Based BCI.
    Zhang X; Guo Y; Gao B; Long J
    IEEE Trans Neural Syst Rehabil Eng; 2020 Jun; 28(6):1262-1270. PubMed ID: 32305926
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Improving Motor Imagery-Based Brain-Computer Interface Performance Based on Sensory Stimulation Training: An Approach Focused on Poorly Performing Users.
    Park S; Ha J; Kim DH; Kim L
    Front Neurosci; 2021; 15():732545. PubMed ID: 34803582
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The Effects of Sensory Threshold Somatosensory Electrical Stimulation on Users With Different MI-BCI Performance.
    Chen L; Zhang L; Wang Z; Gu B; Zhang X; Ming D
    Front Neurosci; 2022; 16():909434. PubMed ID: 35784856
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Execution, assessment and improvement methods of motor imagery for brain-computer interface].
    Tian G; Chen J; Ding P; Gong A; Wang F; Luo J; Dong Y; Zhao L; Dang C; Fu Y
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):434-446. PubMed ID: 34180188
    [TBL] [Abstract][Full Text] [Related]  

  • 25. [Research on performance of motor-imagery-based brain-computer interface in different complexity of Chinese character patterns].
    Zuo C; Mao Y; Liu Q; Wang X; Jin J
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2021 Jun; 38(3):417-424. PubMed ID: 34180186
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Performance Variation of a Somatosensory BCI Based on Imagined Sensation: A Large Population Study.
    Yao L; Jiang N; Mrachacz-Kersting N; Zhu X; Farina D; Wang Y
    IEEE Trans Neural Syst Rehabil Eng; 2022; 30():2486-2493. PubMed ID: 35969546
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Combining motor imagery with selective sensation toward a hybrid-modality BCI.
    Yao L; Meng J; Zhang D; Sheng X; Zhu X
    IEEE Trans Biomed Eng; 2014 Aug; 61(8):2304-12. PubMed ID: 24235291
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A novel calibration and task guidance framework for motor imagery BCI via a tendon vibration induced sensation with kinesthesia illusion.
    Yao L; Meng J; Sheng X; Zhang D; Zhu X
    J Neural Eng; 2015 Feb; 12(1):016005. PubMed ID: 25461477
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Distribution Adaptation and Classification Framework Based on Multiple Kernel Learning for Motor Imagery BCI Illiteracy.
    Tao L; Cao T; Wang Q; Liu D; Sun J
    Sensors (Basel); 2022 Aug; 22(17):. PubMed ID: 36081031
    [TBL] [Abstract][Full Text] [Related]  

  • 30. EEG-based vibrotactile evoked brain-computer interfaces system: A systematic review.
    Huang X; Liang S; Li Z; Lai CYY; Choi KS
    PLoS One; 2022; 17(6):e0269001. PubMed ID: 35657949
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Selective sensation based brain-computer interface via mechanical vibrotactile stimulation.
    Yao L; Meng J; Zhang D; Sheng X; Zhu X
    PLoS One; 2013; 8(6):e64784. PubMed ID: 23762253
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Assessing motor imagery in brain-computer interface training: Psychological and neurophysiological correlates.
    Vasilyev A; Liburkina S; Yakovlev L; Perepelkina O; Kaplan A
    Neuropsychologia; 2017 Mar; 97():56-65. PubMed ID: 28167121
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transcranial magnetic stimulation for individual identification of the best electrode position for a motor imagery-based brain-computer interface.
    Hänselmann S; Schneiders M; Weidner N; Rupp R
    J Neuroeng Rehabil; 2015 Aug; 12():71. PubMed ID: 26303933
    [TBL] [Abstract][Full Text] [Related]  

  • 34. EEG dataset and OpenBMI toolbox for three BCI paradigms: an investigation into BCI illiteracy.
    Lee MH; Kwon OY; Kim YJ; Kim HK; Lee YE; Williamson J; Fazli S; Lee SW
    Gigascience; 2019 May; 8(5):. PubMed ID: 30698704
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Why standard brain-computer interface (BCI) training protocols should be changed: an experimental study.
    Jeunet C; Jahanpour E; Lotte F
    J Neural Eng; 2016 Jun; 13(3):036024. PubMed ID: 27172246
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Competing at the Cybathlon championship for people with disabilities: long-term motor imagery brain-computer interface training of a cybathlete who has tetraplegia.
    Korik A; McCreadie K; McShane N; Du Bois N; Khodadadzadeh M; Stow J; McElligott J; Carroll Á; Coyle D
    J Neuroeng Rehabil; 2022 Sep; 19(1):95. PubMed ID: 36068570
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Enhancing sensorimotor BCI performance with assistive afferent activity: An online evaluation.
    Vidaurre C; Ramos Murguialday A; Haufe S; Gómez M; Müller KR; Nikulin VV
    Neuroimage; 2019 Oct; 199():375-386. PubMed ID: 31158476
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Predicting BCI subject performance using probabilistic spatio-temporal filters.
    Suk HI; Fazli S; Mehnert J; Müller KR; Lee SW
    PLoS One; 2014; 9(2):e87056. PubMed ID: 24551050
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Motor Imagery Classification Based on EEG Sensing with Visual and Vibrotactile Guidance.
    Batistić L; Sušanj D; Pinčić D; Ljubic S
    Sensors (Basel); 2023 May; 23(11):. PubMed ID: 37299791
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.