These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 37143288)

  • 1. Flexible Electrodes for Brain-Computer Interface System.
    Wang J; Wang T; Liu H; Wang K; Moses K; Feng Z; Li P; Huang W
    Adv Mater; 2023 Nov; 35(47):e2211012. PubMed ID: 37143288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Wearable Channel Selection-Based Brain-Computer Interface for Motor Imagery Detection.
    Lo CC; Chien TY; Chen YC; Tsai SH; Fang WC; Lin BS
    Sensors (Basel); 2016 Feb; 16(2):213. PubMed ID: 26861347
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Flexible Electrodes for In Vivo and In Vitro Electrophysiological Signal Recording.
    Zhu M; Wang H; Li S; Liang X; Zhang M; Dai X; Zhang Y
    Adv Healthc Mater; 2021 Sep; 10(17):e2100646. PubMed ID: 34050635
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Novel semi-dry electrodes for brain-computer interface applications.
    Wang F; Li G; Chen J; Duan Y; Zhang D
    J Neural Eng; 2016 Aug; 13(4):046021. PubMed ID: 27378253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A high-speed brain-computer interface (BCI) using dry EEG electrodes.
    Spüler M
    PLoS One; 2017; 12(2):e0172400. PubMed ID: 28225794
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Brain-computer interfaces for communication and control.
    Wolpaw JR; Birbaumer N; McFarland DJ; Pfurtscheller G; Vaughan TM
    Clin Neurophysiol; 2002 Jun; 113(6):767-91. PubMed ID: 12048038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recording human electrocorticographic (ECoG) signals for neuroscientific research and real-time functional cortical mapping.
    Hill NJ; Gupta D; Brunner P; Gunduz A; Adamo MA; Ritaccio A; Schalk G
    J Vis Exp; 2012 Jun; (64):. PubMed ID: 22782131
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Systematic Review of Virtual Reality and Robot Therapy as Recent Rehabilitation Technologies Using EEG-Brain-Computer Interface Based on Movement-Related Cortical Potentials.
    Said RR; Heyat MBB; Song K; Tian C; Wu Z
    Biosensors (Basel); 2022 Dec; 12(12):. PubMed ID: 36551100
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A Combined Virtual Electrode-Based ESA and CNN Method for MI-EEG Signal Feature Extraction and Classification.
    Lun X; Zhang Y; Zhu M; Lian Y; Hou Y
    Sensors (Basel); 2023 Nov; 23(21):. PubMed ID: 37960592
    [TBL] [Abstract][Full Text] [Related]  

  • 10. VR-enabled portable brain-computer interfaces via wireless soft bioelectronics.
    Mahmood M; Kim N; Mahmood M; Kim H; Kim H; Rodeheaver N; Sang M; Yu KJ; Yeo WH
    Biosens Bioelectron; 2022 Aug; 210():114333. PubMed ID: 35525171
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterizing the stimulation interference in electroencephalographic signals during brain-computer interface-controlled functional electrical stimulation therapy.
    Jovanovic LI; Popovic MR; Marquez-Chin C
    Artif Organs; 2022 Mar; 46(3):398-411. PubMed ID: 34460942
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design and Validation of a Low-Cost Mobile EEG-Based Brain-Computer Interface.
    Craik A; González-España JJ; Alamir A; Edquilang D; Wong S; Sánchez Rodríguez L; Feng J; Francisco GE; Contreras-Vidal JL
    Sensors (Basel); 2023 Jun; 23(13):. PubMed ID: 37447780
    [No Abstract]   [Full Text] [Related]  

  • 13. A dry electroencephalogram electrode for applications in steady-state visual evoked potential-based brain-computer interface systems.
    Li P; Yin C; Li M; Li H; Yang B
    Biosens Bioelectron; 2021 Sep; 187():113326. PubMed ID: 34004544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Brain-computer interfaces using capacitive measurement of visual or auditory steady-state responses.
    Baek HJ; Kim HS; Heo J; Lim YG; Park KS
    J Neural Eng; 2013 Apr; 10(2):024001. PubMed ID: 23448913
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Polyvinyl alcohol/polyacrylamide double-network hydrogel-based semi-dry electrodes for robust electroencephalography recording at hairy scalp for noninvasive brain-computer interfaces.
    Li G; Liu Y; Chen Y; Li M; Song J; Li K; Zhang Y; Hu L; Qi X; Wan X; Liu J; He Q; Zhou H
    J Neural Eng; 2023 Mar; 20(2):. PubMed ID: 36863014
    [No Abstract]   [Full Text] [Related]  

  • 16. Custom-Fitted In- and Around-the-Ear Sensors for Unobtrusive and On-the-Go EEG Acquisitions: Development and Validation.
    Valentin O; Viallet G; Delnavaz A; Cretot-Richert G; Ducharme M; Monsarat-Chanon H; Voix J
    Sensors (Basel); 2021 Apr; 21(9):. PubMed ID: 33922456
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Sensing and Stimulation Applications of Carbon Nanomaterials in Implantable Brain-Computer Interface.
    Li J; Cheng Y; Gu M; Yang Z; Zhan L; Du Z
    Int J Mol Sci; 2023 Mar; 24(6):. PubMed ID: 36982255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Graphene and graphene-related materials as brain electrodes.
    Xu B; Pei J; Feng L; Zhang XD
    J Mater Chem B; 2021 Dec; 9(46):9485-9496. PubMed ID: 34797365
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Design-development of an at-home modular brain-computer interface (BCI) platform in a case study of cervical spinal cord injury.
    Davis KC; Meschede-Krasa B; Cajigas I; Prins NW; Alver C; Gallo S; Bhatia S; Abel JH; Naeem JA; Fisher L; Raza F; Rifai WR; Morrison M; Ivan ME; Brown EN; Jagid JR; Prasad A
    J Neuroeng Rehabil; 2022 Jun; 19(1):53. PubMed ID: 35659259
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrasoft microwire neural electrodes improve chronic tissue integration.
    Du ZJ; Kolarcik CL; Kozai TDY; Luebben SD; Sapp SA; Zheng XS; Nabity JA; Cui XT
    Acta Biomater; 2017 Apr; 53():46-58. PubMed ID: 28185910
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.