BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 37143879)

  • 1. The impact of epistasis in the heterosis and combining ability analyses.
    Viana JMS
    Front Plant Sci; 2023; 14():1168419. PubMed ID: 37143879
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Significance of linkage disequilibrium and epistasis on genetic variances in noninbred and inbred populations.
    Viana JMS; Garcia AAF
    BMC Genomics; 2022 Apr; 23(1):286. PubMed ID: 35397494
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Genetic dissection of heterosis using epistatic association mapping in a partial NCII mating design.
    Wen J; Zhao X; Wu G; Xiang D; Liu Q; Bu SH; Yi C; Song Q; Dunwell JM; Tu J; Zhang T; Zhang YM
    Sci Rep; 2015 Dec; 5():18376. PubMed ID: 26679476
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Genetic basis of heterosis for yield and yield components explored by QTL mapping across four genetic populations in upland cotton.
    Li C; Zhao T; Yu H; Li C; Deng X; Dong Y; Zhang F; Zhang Y; Mei L; Chen J; Zhu S
    BMC Genomics; 2018 Dec; 19(1):910. PubMed ID: 30541432
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Partial Dominance, Overdominance and Epistasis as the Genetic Basis of Heterosis in Upland Cotton (Gossypium hirsutum L.).
    Liang Q; Shang L; Wang Y; Hua J
    PLoS One; 2015; 10(11):e0143548. PubMed ID: 26618635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Multiplicative vs. arbitrary gene action in heterosis.
    Schnell FW; Cockerham CC
    Genetics; 1992 Jun; 131(2):461-9. PubMed ID: 1644280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Expected influence of linkage disequilibrium on genetic variance caused by dominance and epistasis on quantitative traits.
    Hill WG; Mäki-Tanila A
    J Anim Breed Genet; 2015 Apr; 132(2):176-86. PubMed ID: 25823842
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Genomic prediction of hybrid crops allows disentangling dominance and epistasis.
    González-Diéguez D; Legarra A; Charcosset A; Moreau L; Lehermeier C; Teyssèdre S; Vitezica ZG
    Genetics; 2021 May; 218(1):. PubMed ID: 33864072
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orthogonal Estimates of Variances for Additive, Dominance, and Epistatic Effects in Populations.
    Vitezica ZG; Legarra A; Toro MA; Varona L
    Genetics; 2017 Jul; 206(3):1297-1307. PubMed ID: 28522540
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The role of epistasis in the manifestation of heterosis: a systems-oriented approach.
    Melchinger AE; Utz HF; Piepho HP; Zeng ZB; Schön CC
    Genetics; 2007 Nov; 177(3):1815-25. PubMed ID: 18039883
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. I. Biomass and grain yield.
    Li ZK; Luo LJ; Mei HW; Wang DL; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1737-53. PubMed ID: 11514459
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Genetic Dissection of Hybrid Performance and Heterosis for Yield-Related Traits in Maize.
    Li D; Zhou Z; Lu X; Jiang Y; Li G; Li J; Wang H; Chen S; Li X; Würschum T; Reif JC; Xu S; Li M; Liu W
    Front Plant Sci; 2021; 12():774478. PubMed ID: 34917109
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effects of genetic drift on variance components under a general model of epistasis.
    Barton NH; Turelli M
    Evolution; 2004 Oct; 58(10):2111-32. PubMed ID: 15562679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unconditional and conditional analysis of epistasis between tillering QTLs based on single segment substitution lines in rice.
    Zhou H; Yang W; Ma S; Luan X; Zhu H; Wang A; Huang C; Rong B; Dong S; Meng L; Wang S; Zhang G; Liu G
    Sci Rep; 2020 Sep; 10(1):15912. PubMed ID: 32985566
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genes with a Combination of Over-Dominant and Epistatic Effects Underlie Heterosis in Growth of Saccharomyces cerevisiae at High Temperature.
    Shapira R; David L
    Front Genet; 2016; 7():72. PubMed ID: 27200081
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Overdominant epistatic loci are the primary genetic basis of inbreeding depression and heterosis in rice. II. Grain yield components.
    Luo LJ; Li ZK; Mei HW; Shu QY; Tabien R; Zhong DB; Ying CS; Stansel JW; Khush GS; Paterson AH
    Genetics; 2001 Aug; 158(4):1755-71. PubMed ID: 11514460
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of a triple testcross design with recombinant inbred lines reveals a significant role of epistasis in heterosis for biomass-related traits in Arabidopsis.
    Kusterer B; Muminovic J; Utz HF; Piepho HP; Barth S; Heckenberger M; Meyer RC; Altmann T; Melchinger AE
    Genetics; 2007 Apr; 175(4):2009-17. PubMed ID: 17287529
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of breed proportion and components of heterosis for semen traits in a composite cattle breed.
    Khayatzadeh N; Mészáros G; Utsunomiya YT; Schmitz-Hsu F; Seefried F; Schnyder U; Ferenčaković M; Garcia JF; Curik I; Sölkner J
    J Anim Breed Genet; 2018 Feb; 135(1):45-53. PubMed ID: 29164741
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dominance and epistasis are the main contributors to heterosis for plant height in rice.
    Shen G; Zhan W; Chen H; Xing Y
    Plant Sci; 2014 Feb; 215-216():11-8. PubMed ID: 24388510
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of heterosis and quantitative trait loci for kernel shape related traits using triple testcross population in maize.
    Jiang L; Ge M; Zhao H; Zhang T
    PLoS One; 2015; 10(4):e0124779. PubMed ID: 25919458
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.