These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 37144043)

  • 1. Synthesis and Characterization of Supported Mixed MoW Carbide Catalysts.
    Führer M; van Haasterecht T; de Boed EJJ; de Jongh PE; Bitter JH
    J Phys Chem C Nanomater Interfaces; 2023 Apr; 127(16):7792-7807. PubMed ID: 37144043
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Carbon-supported molybdenum carbide catalysts for the conversion of vegetable oils.
    Han J; Duan J; Chen P; Lou H; Zheng X; Hong H
    ChemSusChem; 2012 Apr; 5(4):727-33. PubMed ID: 22374620
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molybdenum Carbide: Controlling the Geometric and Electronic Structure of Noble Metals for the Activation of O-H and C-H Bonds.
    Deng Y; Ge Y; Xu M; Yu Q; Xiao D; Yao S; Ma D
    Acc Chem Res; 2019 Dec; 52(12):3372-3383. PubMed ID: 31411856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Catalytic hydrodeoxygenation of rubber seed oil over sonochemically synthesized Ni-Mo/γ-Al
    Ameen M; Azizan MT; Ramli A; Yusup S; Alnarabiji MS
    Ultrason Sonochem; 2019 Mar; 51():90-102. PubMed ID: 30514489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Supported Molybdenum Carbide and Nitride Catalysts for Carbon Dioxide Hydrogenation.
    Abou Hamdan M; Nassereddine A; Checa R; Jahjah M; Pinel C; Piccolo L; Perret N
    Front Chem; 2020; 8():452. PubMed ID: 32582635
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Engineering non-sintered, metal-terminated tungsten carbide nanoparticles for catalysis.
    Hunt ST; Nimmanwudipong T; Román-Leshkov Y
    Angew Chem Int Ed Engl; 2014 May; 53(20):5131-6. PubMed ID: 24700729
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rational Synthesis for a Noble Metal Carbide.
    Wakisaka T; Kusada K; Wu D; Yamamoto T; Toriyama T; Matsumura S; Akiba H; Yamamuro O; Ikeda K; Otomo T; Palina N; Chen Y; Kumara LSR; Song C; Sakata O; Xie W; Koyama M; Kubota Y; Kawaguchi S; Arevalo RL; Aspera SM; Arguelles EF; Nakanishi H; Kitagawa H
    J Am Chem Soc; 2020 Jan; 142(3):1247-1253. PubMed ID: 31750648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Rapid synthesis of high-purity molybdenum carbide with controlled crystal phases.
    Fang R; He H; Wang Z; Han YC; Fan FR
    Mater Horiz; 2024 Jul; 11(15):3595-3603. PubMed ID: 38742402
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Predictive Synthesis of Transition Metal Carbide via Thermochemical Oxocarbon Equilibrium.
    Oh SH; Kim D; Kim JY; Kang G; Jeon J; Kim M; Joo YC; Nam DH
    J Am Chem Soc; 2024 Jul; 146(26):17940-17955. PubMed ID: 38809238
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Synthesis of Mo and W carbide and nitride nanoparticles via a simple "urea glass" route.
    Giordano C; Erpen C; Yao W; Antonietti M
    Nano Lett; 2008 Dec; 8(12):4659-63. PubMed ID: 19367981
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic functions of Mo/Ni/MgO in the synthesis of thin carbon nanotubes.
    Zhou LP; Ohta K; Kuroda K; Lei N; Matsuishi K; Gao L; Matsumoto T; Nakamura J
    J Phys Chem B; 2005 Mar; 109(10):4439-47. PubMed ID: 16851515
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Room Temperature Ion Beam Synthesis of Ultra-Fine Molybdenum Carbide Nanoparticles: Toward a Scalable Fabrication Route for Earth-Abundant Electrodes.
    Fiedler H; Malone N; Mitchell DRG; Nancarrow M; Jovic V; Waterhouse GIN; Kennedy J; Gupta P
    Small; 2024 Sep; 20(39):e2304118. PubMed ID: 37438619
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Eugenol Hydrodeoxygenation Over Mixed Mo-W Carbides.
    Akmach D; Tran CC; Stevanovic T; El Kadib A; Kaliaguine S
    ChemSusChem; 2024 Oct; 17(20):e202301767. PubMed ID: 38728537
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activity and Stability of Dispersed Multi Metallic Pt-based Catalysts for CO Tolerance in Proton Exchange Membrane Fuel Cell Anodes.
    Hassan A; Ticianelli EA
    An Acad Bras Cienc; 2018; 90(1 Suppl 1):697-718. PubMed ID: 29668800
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of the Carbon Support and Conditions on the Carbothermal Synthesis of Cu-Molybdenum Carbide and Its Application on CO
    Dongil AB; Blanco E; Villora-Picó JJ; Sepúlveda-Escribano A; Rodríguez-Ramos I
    Nanomaterials (Basel); 2022 Mar; 12(7):. PubMed ID: 35407166
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterisation of nanoscale carbide precipitation in as-cast Co-Cr-W-based dental alloys.
    Yamanaka K; Mori M; Sato K; Chiba A
    J Mater Chem B; 2016 Mar; 4(10):1778-1786. PubMed ID: 32263055
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Transition Metal Phosphide Nanoparticles Supported on SBA-15 as Highly Selective Hydrodeoxygenation Catalysts for the Production of Advanced Biofuels.
    Yang Y; Ochoa-Hernández C; de la Peña O'Shea VA; Pizarro P; Coronado JM; Serrano DP
    J Nanosci Nanotechnol; 2015 Sep; 15(9):6642-50. PubMed ID: 26716223
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of carbon on the stability and chemical performance of transition metal carbides: a density functional study.
    Liu P; Rodriguez JA
    J Chem Phys; 2004 Mar; 120(11):5414-23. PubMed ID: 15267415
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Gleeble-Simulated and Semi-Industrial Studies on the Microstructure Evolution of Fe-Co-Cr-Mo-W-V-C Alloy during Hot Deformation.
    Luo Y; Guo H; Guo J; Yang W
    Materials (Basel); 2018 Dec; 11(12):. PubMed ID: 30567337
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Bimetallic Au-Pd alloy nanoparticles supported on MIL-101(Cr) as highly efficient catalysts for selective hydrogenation of 1,3-butadiene.
    Liu L; Zhou X; Guo L; Yan S; Li Y; Jiang S; Tai X
    RSC Adv; 2020 Sep; 10(55):33417-33427. PubMed ID: 35515058
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.