BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 37144442)

  • 1. A Unique Etching-Doping Route to Fe/Mo Co-Doped Ni Oxyhydroxide Catalyst for Enhanced Oxygen Evolution Reaction.
    Wei Y; Yi L; Wang R; Li J; Li D; Li T; Sun W; Hu W
    Small; 2023 Sep; 19(37):e2301267. PubMed ID: 37144442
    [TBL] [Abstract][Full Text] [Related]  

  • 2. One-step achievement of Fe-doped and interfacial Ru nanoclusters co-engineered Ni(OH)
    Liu F; Feng Z; Zhang X; Cui L; Liu J
    J Colloid Interface Sci; 2023 May; 638():498-505. PubMed ID: 36758260
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In Situ Reconstructed Zn doped Fe
    Zhang X; Yi H; Jin M; Lian Q; Huang Y; Ai Z; Huang R; Zuo Z; Tang C; Amini A; Jia F; Song S; Cheng C
    Small; 2022 Sep; 18(37):e2203710. PubMed ID: 35961949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Iron-Doped Nickel Molybdate with Enhanced Oxygen Evolution Kinetics.
    Chen J; Zhao G; Chen Y; Rui K; Mao H; Dou SX; Sun W
    Chemistry; 2019 Jan; 25(1):280-284. PubMed ID: 30346644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strongly facet-dependent activity of iron-doped β-nickel oxyhydroxide for the oxygen evolution reaction.
    Govind Rajan A; Martirez JMP; Carter EA
    Phys Chem Chem Phys; 2024 May; 26(20):14721-14733. PubMed ID: 38716632
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fe
    Meng X; Han J; Lu L; Qiu G; Wang ZL; Sun C
    Small; 2019 Oct; 15(41):e1902551. PubMed ID: 31423746
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Holey Assembly of Two-Dimensional Iron-Doped Nickel-Cobalt Layered Double Hydroxide Nanosheets for Energy Conversion Application.
    Septiani NLW; Kaneti YV; Guo Y; Yuliarto B; Jiang X; Ide Y; Nugraha N; Dipojono HK; Yu A; Sugahara Y; Golberg D; Yamauchi Y
    ChemSusChem; 2020 Mar; 13(6):1645-1655. PubMed ID: 31270940
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of amorphous engineering and cerium doping in NiFe oxyhydroxide for electrocatalytic water oxidation.
    Bai J; Chen C; Lian Y; Deng Y; Xiang M; Zhou Q; Tang Y; Su Y
    J Colloid Interface Sci; 2024 Jun; 663():280-286. PubMed ID: 38402822
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Deciphering Iron-Dependent Activity in Oxygen Evolution Catalyzed by Nickel-Iron Layered Double Hydroxide.
    Lee S; Bai L; Hu X
    Angew Chem Int Ed Engl; 2020 May; 59(21):8072-8077. PubMed ID: 32078226
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Doping Mo into NiFe LDH/NiSe Heterostructure to Enhance Oxygen Evolution Activity by Synergistically Facilitating Electronic Modulation and Surface Reconstruction.
    Gan Y; Li Z; Ye Y; Dai X; Nie F; Yin X; Ren Z; Wu B; Cao Y; Cai R; Zhang X; Song W
    ChemSusChem; 2022 Oct; 15(20):e202201205. PubMed ID: 36043340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reprogramming thermodynamic-limiting oxidation cycle in NiFe-based oxygen evolution electrocatalyst through Mo doping induced surface reconstruction.
    Liu Y; Wang X; Zhu Y; Wang H; Yu J; Liu H; Ge S
    J Colloid Interface Sci; 2022 Sep; 622():443-451. PubMed ID: 35526408
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dendrimer-Ni-Based Material: Toward an Efficient Ni-Fe Layered Double Hydroxide for Oxygen-Evolution Reaction.
    Salmanion M; Najafpour MM
    Inorg Chem; 2021 Apr; 60(8):6073-6085. PubMed ID: 33779157
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ru-Doping Enhanced Electrocatalysis of Metal-Organic Framework Nanosheets toward Overall Water Splitting.
    Zhao M; Li H; Li W; Li J; Yi L; Hu W; Li CM
    Chemistry; 2020 Dec; 26(71):17091-17096. PubMed ID: 32734617
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Voltage activation induced MoO
    Zhang X; Liao H; Tan P; Zhang Y; Zhou B; Liu M; Pan J
    J Colloid Interface Sci; 2024 May; 661():772-780. PubMed ID: 38325175
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Improving the Oxygen Evolution Activity of Layered Double-Hydroxide via Erbium-Induced Electronic Engineering.
    Zhu Y; Wang X; Zhu X; Wu Z; Zhao D; Wang F; Sun D; Tang Y; Li H; Fu G
    Small; 2023 Feb; 19(5):e2206531. PubMed ID: 36445024
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Insight into the amorphous nickel-iron (oxy)hydroxide catalyst for efficient oxygen evolution reaction.
    Liao H; Tan P; Dong R; Jiang M; Hu X; Lu L; Wang Y; Liu H; Liu Y; Pan J
    J Colloid Interface Sci; 2021 Jun; 591():307-313. PubMed ID: 33618290
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafine NiFe-Based (Oxy)Hydroxide Nanosheet Arrays with Rich Edge Planes and Superhydrophilic-Superaerophobic Characteristics for Oxygen Evolution Reaction.
    Jiao H; Wang C; Zhang ZY; Song YF; Feng BQ; Na P; Wang ZL
    Small; 2023 Sep; 19(36):e2301609. PubMed ID: 37116125
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Crystallization of Active NiOOH/CoOOH Heterostructures with Hydroxide Ion Adsorption Sites on Velutipes-like CoSe/NiSe Nanorods as Catalysts for Oxygen Evolution and Cocatalysts for Methanol Oxidation.
    Du J; You S; Li X; Tang B; Jiang B; Yu Y; Cai Z; Ren N; Zou J
    ACS Appl Mater Interfaces; 2020 Jan; 12(1):686-697. PubMed ID: 31825209
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heterogeneous Fe-Doped Ni(OH)
    Mao F; Zhang J; Wang HF; Liu PF; Yang HG
    Chemistry; 2023 Dec; 29(69):e202302055. PubMed ID: 37720979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrochemical oxidation of boron-doped nickel-iron layered double hydroxide for facile charge transfer in oxygen evolution electrocatalysts.
    Ahn IK; Lee SY; Kim HG; Lee GB; Lee JH; Kim M; Joo YC
    RSC Adv; 2021 Feb; 11(14):8198-8206. PubMed ID: 35423321
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.