BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 37144732)

  • 1. Experiment and molecular dynamics simulations reveal proanthocyanidin B2 and B3 can inhibit prion aggregation by different mechanisms.
    Li Q; Zhu Y; Meng X; Tong HHY; Liu H
    J Biomol Struct Dyn; 2024 Mar; 42(5):2424-2436. PubMed ID: 37144732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. pH-Induced Misfolding Mechanism of Prion Protein: Insights from Microsecond-Accelerated Molecular Dynamics Simulations.
    Zhou S; Shi D; Liu X; Yao X; Da LT; Liu H
    ACS Chem Neurosci; 2019 Jun; 10(6):2718-2729. PubMed ID: 31070897
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computational Insights Into the Inhibition Mechanism of Proanthocyanidin B2 on Tau Hexapeptide (PHF6) Oligomer.
    Li Q; Xiong C; Liu H; Ge H; Yao X; Liu H
    Front Chem; 2021; 9():666043. PubMed ID: 34336783
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unraveling the Molecular Mechanism of Prion H2 C-Terminus Misfolding by Metadynamics Simulations.
    Xu Z; Liu H; Wang S; Zhang Q; Yao X; Zhou S; Liu H
    ACS Chem Neurosci; 2020 Mar; 11(5):772-782. PubMed ID: 32023408
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural insight into conformational change in prion protein by breakage of electrostatic network around H187 due to its protonation.
    Lee J; Chang I
    Sci Rep; 2019 Dec; 9(1):19305. PubMed ID: 31848406
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics studies on the buffalo prion protein.
    Zhang J; Wang F; Chatterjee S
    J Biomol Struct Dyn; 2016; 34(4):762-77. PubMed ID: 26043781
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Investigation of the conformation of human prion protein in ethanol solution using molecular dynamics simulations.
    Xia K; Shen H; Wang P; Tan R; Xun D
    J Biomol Struct Dyn; 2023; 41(12):5872-5881. PubMed ID: 35838152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aggregation and amyloid fibril formation induced by chemical dimerization of recombinant prion protein in physiological-like conditions.
    Roostaee A; Côté S; Roucou X
    J Biol Chem; 2009 Nov; 284(45):30907-16. PubMed ID: 19710507
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Molecular Dynamics Simulation Study on the Binding and Stabilization Mechanism of Antiprion Compounds to the "Hot Spot" Region of PrP
    Zhou S; Liu X; An X; Yao X; Liu H
    ACS Chem Neurosci; 2017 Nov; 8(11):2446-2456. PubMed ID: 28795797
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Molecular dynamics simulations of human prion protein: importance of correct treatment of electrostatic interactions.
    Zuegg J; Gready JE
    Biochemistry; 1999 Oct; 38(42):13862-76. PubMed ID: 10529232
    [TBL] [Abstract][Full Text] [Related]  

  • 11. N-terminal Prion Protein Peptides (PrP(120-144)) Form Parallel In-register β-Sheets via Multiple Nucleation-dependent Pathways.
    Wang Y; Shao Q; Hall CK
    J Biol Chem; 2016 Oct; 291(42):22093-22105. PubMed ID: 27576687
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mutation-Dependent Refolding of Prion Protein Unveils Amyloidogenic-Related Structural Ramifications: Insights from Molecular Dynamics Simulations.
    Palaniappan C; Narayanan RC; Sekar K
    ACS Chem Neurosci; 2021 Aug; 12(15):2810-2819. PubMed ID: 34296847
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cellular prion protein gene polymorphisms linked to differential scrapie susceptibility correlate with distinct residue connectivity between secondary structure elements.
    Soto P; Claflin IA; Bursott AL; Schwab-McCoy AD; Bartz JC
    J Biomol Struct Dyn; 2021 Jan; 39(1):129-139. PubMed ID: 31900058
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The roles of the conserved tyrosine in the β2-α2 loop of the prion protein.
    Huang D; Caflisch A
    Prion; 2015; 9(6):412-9. PubMed ID: 26689486
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Neutralizing Mutations Significantly Inhibit Amyloid Formation by Human Prion Protein and Decrease Its Cytotoxicity.
    Huang JJ; Li XN; Liu WL; Yuan HY; Gao Y; Wang K; Tang B; Pang DW; Chen J; Liang Y
    J Mol Biol; 2020 Feb; 432(4):828-844. PubMed ID: 31821812
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The folding mechanism and key metastable state identification of the PrP127-147 monomer studied by molecular dynamics simulations and Markov state model analysis.
    Zhou S; Wang Q; Wang Y; Yao X; Han W; Liu H
    Phys Chem Chem Phys; 2017 May; 19(18):11249-11259. PubMed ID: 28406520
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Influence of pH on the human prion protein: insights into the early steps of misfolding.
    van der Kamp MW; Daggett V
    Biophys J; 2010 Oct; 99(7):2289-98. PubMed ID: 20923664
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Different misfolding mechanisms converge on common conformational changes: human prion protein pathogenic mutants Y218N and E196K.
    Cheng CJ; Daggett V
    Prion; 2014; 8(1):125-35. PubMed ID: 24509603
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Preventing misfolding of the prion protein by trimethylamine N-oxide.
    Bennion BJ; DeMarco ML; Daggett V
    Biochemistry; 2004 Oct; 43(41):12955-63. PubMed ID: 15476389
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of pH and aggregation in the human prion conversion into scrapie form: a study using molecular dynamics with excited normal modes.
    Lima AN; de Oliveira RJ; Braz ASK; de Souza Costa MG; Perahia D; Scott LPB
    Eur Biophys J; 2018 Jul; 47(5):583-590. PubMed ID: 29546436
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.