These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 37145847)

  • 1. The good, the bad, and the phosphate: regulation of beneficial and detrimental plant-microbe interactions by the plant phosphate status.
    Paries M; Gutjahr C
    New Phytol; 2023 Jul; 239(1):29-46. PubMed ID: 37145847
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Phosphate Starvation Response System: Its Role in the Regulation of Plant-Microbe Interactions.
    Isidra-Arellano MC; Delaux PM; Valdés-López O
    Plant Cell Physiol; 2021 Jul; 62(3):392-400. PubMed ID: 33515263
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Shoot- and root-borne cytokinin influences arbuscular mycorrhizal symbiosis.
    Cosme M; Ramireddy E; Franken P; Schmülling T; Wurst S
    Mycorrhiza; 2016 Oct; 26(7):709-20. PubMed ID: 27193443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Combined phosphate and nitrogen limitation generates a nutrient stress transcriptome favorable for arbuscular mycorrhizal symbiosis in Medicago truncatula.
    Bonneau L; Huguet S; Wipf D; Pauly N; Truong HN
    New Phytol; 2013 Jul; 199(1):188-202. PubMed ID: 23506613
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Medicago truncatula hypermycorrhizal B9 mutant displays an altered response to phosphate and is more susceptible to Aphanomyces euteiches.
    Truong HN; Thalineau E; Bonneau L; Fournier C; Potin S; Balzergue S; VAN Tuinen D; Jeandroz S; Morandi D
    Plant Cell Environ; 2015 Jan; 38(1):73-88. PubMed ID: 24815324
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Regulation of root morphogenesis in arbuscular mycorrhizae: what role do fungal exudates, phosphate, sugars and hormones play in lateral root formation?
    Fusconi A
    Ann Bot; 2014 Jan; 113(1):19-33. PubMed ID: 24227446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Cereal phosphate transporters associated with the mycorrhizal pathway of phosphate uptake into roots.
    Glassop D; Smith SE; Smith FW
    Planta; 2005 Nov; 222(4):688-98. PubMed ID: 16133217
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Symbiotic phosphate transport in arbuscular mycorrhizas.
    Karandashov V; Bucher M
    Trends Plant Sci; 2005 Jan; 10(1):22-9. PubMed ID: 15642520
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reprogramming plant cells for endosymbiosis.
    Oldroyd GE; Harrison MJ; Paszkowski U
    Science; 2009 May; 324(5928):753-4. PubMed ID: 19423817
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Physiological and molecular evidence for Pi uptake via the symbiotic pathway in a reduced mycorrhizal colonization mutant in tomato associated with a compatible fungus.
    Poulsen KH; Nagy R; Gao LL; Smith SE; Bucher M; Smith FA; Jakobsen I
    New Phytol; 2005 Nov; 168(2):445-54. PubMed ID: 16219083
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Potassium Transporter SlHAK10 Is Involved in Mycorrhizal Potassium Uptake.
    Liu J; Liu J; Liu J; Cui M; Huang Y; Tian Y; Chen A; Xu G
    Plant Physiol; 2019 May; 180(1):465-479. PubMed ID: 30760639
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Strigolactones, signals for parasitic plants and arbuscular mycorrhizal fungi.
    García-Garrido JM; Lendzemo V; Castellanos-Morales V; Steinkellner S; Vierheilig H
    Mycorrhiza; 2009 Sep; 19(7):449-459. PubMed ID: 19629541
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A genetically encoded biosensor reveals spatiotemporal variation in cellular phosphate content in Brachypodium distachyon mycorrhizal roots.
    Zhang S; Daniels DA; Ivanov S; Jurgensen L; Müller LM; Versaw WK; Harrison MJ
    New Phytol; 2022 Jun; 234(5):1817-1831. PubMed ID: 35274313
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced Secondary- and Hormone Metabolism in Leaves of Arbuscular Mycorrhizal
    Adolfsson L; Nziengui H; Abreu IN; Šimura J; Beebo A; Herdean A; Aboalizadeh J; Široká J; Moritz T; Novák O; Ljung K; Schoefs B; Spetea C
    Plant Physiol; 2017 Sep; 175(1):392-411. PubMed ID: 28698354
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis.
    Liao D; Chen X; Chen A; Wang H; Liu J; Liu J; Gu M; Sun S; Xu G
    Plant Cell Physiol; 2015 Apr; 56(4):674-87. PubMed ID: 25535196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant Signaling and Metabolic Pathways Enabling Arbuscular Mycorrhizal Symbiosis.
    MacLean AM; Bravo A; Harrison MJ
    Plant Cell; 2017 Oct; 29(10):2319-2335. PubMed ID: 28855333
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The regulation of arbuscular mycorrhizal symbiosis by phosphate in pea involves early and systemic signalling events.
    Balzergue C; Puech-Pagès V; Bécard G; Rochange SF
    J Exp Bot; 2011 Jan; 62(3):1049-60. PubMed ID: 21045005
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Phosphorus and nitrogen regulate arbuscular mycorrhizal symbiosis in Petunia hybrida.
    Nouri E; Breuillin-Sessoms F; Feller U; Reinhardt D
    PLoS One; 2014; 9(6):e90841. PubMed ID: 24608923
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Lyso-phosphatidylcholine is a signal in the arbuscular mycorrhizal symbiosis.
    Drissner D; Kunze G; Callewaert N; Gehrig P; Tamasloukht M; Boller T; Felix G; Amrhein N; Bucher M
    Science; 2007 Oct; 318(5848):265-8. PubMed ID: 17932296
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants.
    Fellbaum CR; Mensah JA; Cloos AJ; Strahan GE; Pfeffer PE; Kiers ET; Bücking H
    New Phytol; 2014 Jul; 203(2):646-656. PubMed ID: 24787049
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.