These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
165 related articles for article (PubMed ID: 37145875)
21. The control of pyruvate kinase of Escherichia coli. Binding of substrate and allosteric effectors to the enzyme activated by fructose 1,6-bisphosphate. Waygood EB; Mort JS; Sanwal BD Biochemistry; 1976 Jan; 15(2):277-82. PubMed ID: 764863 [TBL] [Abstract][Full Text] [Related]
22. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
23. Sulfhydryl groups of glucosamine-6-phosphate isomerase deaminase from Escherichia coli. Altamirano MM; Mulliert G; Calcagno M Arch Biochem Biophys; 1987 Oct; 258(1):95-100. PubMed ID: 2821923 [TBL] [Abstract][Full Text] [Related]
24. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP; Fetler L; Vachette P; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146 [TBL] [Abstract][Full Text] [Related]
25. Purification and characterization of glucosamine-6-phosphate deaminase from dog kidney cortex. Lara-Lemus R; Libreros-Minotta CA; Altamirano MM; Calcagno ML Arch Biochem Biophys; 1992 Sep; 297(2):213-20. PubMed ID: 1497340 [TBL] [Abstract][Full Text] [Related]
26. Allosteric transition and substrate binding are entropy-driven in glucosamine-6-phosphate deaminase from Escherichia coli. Bustos-Jaimes I; Calcagno ML Arch Biochem Biophys; 2001 Oct; 394(2):156-60. PubMed ID: 11594728 [TBL] [Abstract][Full Text] [Related]
27. Escherichia coli aspartate transcarbamoylase: the molecular basis for a concerted allosteric transition. Kantrowitz ER; Lipscomb WN Trends Biochem Sci; 1990 Feb; 15(2):53-9. PubMed ID: 2186515 [TBL] [Abstract][Full Text] [Related]
28. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Williams MK; Kantrowitz ER Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401 [TBL] [Abstract][Full Text] [Related]
29. Escherichia coli aspartate transcarbamylase: the relation between structure and function. Kantrowitz ER; Lipscomb WN Science; 1988 Aug; 241(4866):669-74. PubMed ID: 3041592 [TBL] [Abstract][Full Text] [Related]
30. Structural and biochemical evidence of the glucose 6-phosphate-allosteric site of maize C4-phosphoenolpyruvate carboxylase: its importance in the overall enzyme kinetics. Muñoz-Clares RA; González-Segura L; Juárez-Díaz JA; Mújica-Jiménez C Biochem J; 2020 Jun; 477(11):2095-2114. PubMed ID: 32459324 [TBL] [Abstract][Full Text] [Related]
31. Homotropic cooperativity from the activation pathway of the allosteric ligand-responsive regulatory trp RNA-binding attenuation protein. Kleckner IR; McElroy CA; Kuzmic P; Gollnick P; Foster MP Biochemistry; 2013 Dec; 52(49):8855-65. PubMed ID: 24224873 [TBL] [Abstract][Full Text] [Related]
32. Homotropic allosteric regulation in monomeric mammalian glucokinase. Larion M; Miller BG Arch Biochem Biophys; 2012 Mar; 519(2):103-11. PubMed ID: 22107947 [TBL] [Abstract][Full Text] [Related]
33. Triggering of allostery in an enzyme by a point mutation: ornithine transcarbamoylase. Kuo LC; Zambidis I; Caron C Science; 1989 Aug; 245(4917):522-4. PubMed ID: 2667139 [TBL] [Abstract][Full Text] [Related]
34. Half-site reactivity, negative cooperativity, and positive cooperativity: quantitative considerations of a plausible model. Bloom CR; Kaarsholm NC; Ha J; Dunn MF Biochemistry; 1997 Oct; 36(42):12759-65. PubMed ID: 9335532 [TBL] [Abstract][Full Text] [Related]
35. Inversion of the allosteric response of Escherichia coli glucosamine-6-P deaminase to N-acetylglucosamine 6-P, by single amino acid replacements. Cisneros DA; Montero-Morán GM; Lara-González S; Calcagno ML Arch Biochem Biophys; 2004 Jan; 421(1):77-84. PubMed ID: 14678787 [TBL] [Abstract][Full Text] [Related]
36. The global allostery model of hemoglobin: an allosteric mechanism involving homotropic and heterotropic interactions. Yonetani T; Tsuneshige A C R Biol; 2003 Jun; 326(6):523-32. PubMed ID: 14558472 [TBL] [Abstract][Full Text] [Related]
37. Amino acid substitutions in the C-terminal regulatory domain disrupt allosteric effector binding to biosynthetic threonine deaminase from Escherichia coli. Chinchilla D; Schwarz FP; Eisenstein E J Biol Chem; 1998 Sep; 273(36):23219-24. PubMed ID: 9722552 [TBL] [Abstract][Full Text] [Related]
38. Isolation of a single activating allosteric interaction in phosphofructokinase from Escherichia coli. Fenton AW; Reinhart GD Biochemistry; 2002 Nov; 41(45):13410-6. PubMed ID: 12416986 [TBL] [Abstract][Full Text] [Related]
39. Studies of the allosteric properties of maize leaf phosphoenolpyruvate carboxylase with the phosphoenolpyruvate analog phosphomycin as activator. Mújica-Jiménez C; Castellanos-Martínez A; Muñoz-Clares RA Biochim Biophys Acta; 1998 Jul; 1386(1):132-44. PubMed ID: 9675261 [TBL] [Abstract][Full Text] [Related]
40. Catabolic ornithine carbamoyltransferase of Pseudomonas aeruginosa. Changes of allosteric properties resulting from modifications at the C-terminus. Tricot C; Schmid S; Baur H; Villeret V; Dideberg O; Haas D; Stalon V Eur J Biochem; 1994 Apr; 221(1):555-61. PubMed ID: 8168544 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]