These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37146396)

  • 1. Contaminant back-diffusion from layered aquitards subjected to barrier-controlled source zones.
    Ding XH; Feng SJ
    Water Res; 2023 Jun; 238():120021. PubMed ID: 37146396
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Investigating the roles of advection and degradation in chlorinated solvent back-diffusion from multi-layer aquitards: A novel analytical approach.
    Ding XH; Feng SJ
    J Hazard Mater; 2022 Sep; 437():129410. PubMed ID: 35897173
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Do CSIA data from aquifers inform on natural degradation of chlorinated ethenes in aquitards?
    Thouement HAA; Kuder T; Heimovaara TJ; van Breukelen BM
    J Contam Hydrol; 2019 Oct; 226():103520. PubMed ID: 31377464
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solute source depletion control of forward and back diffusion through low-permeability zones.
    Yang M; Annable MD; Jawitz JW
    J Contam Hydrol; 2016 Oct; 193():54-62. PubMed ID: 27636989
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Forward and back diffusion of reactive contaminants through multi-layer low permeability sediments.
    Ding XH; Feng SJ; Zheng QT
    Water Res; 2022 Aug; 222():118925. PubMed ID: 35932709
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Assessing aquitard integrity in a complex aquifer - aquitard system contaminated by chlorinated hydrocarbons.
    Filippini M; Parker BL; Dinelli E; Wanner P; Chapman SW; Gargini A
    Water Res; 2020 Mar; 171():115388. PubMed ID: 31877474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Diffusion of solutes from depleting sources into and out of finite low-permeability zones.
    Yang M; McCurley KL; Annable MD; Jawitz JW
    J Contam Hydrol; 2019 Feb; 221():127-134. PubMed ID: 30777404
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Assessing the effect of chlorinated hydrocarbon degradation in aquitards on plume persistence due to back-diffusion.
    Wanner P; Parker BL; Hunkeler D
    Sci Total Environ; 2018 Aug; 633():1602-1612. PubMed ID: 29758910
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Back diffusion from thin low permeability zones.
    Yang M; Annable MD; Jawitz JW
    Environ Sci Technol; 2015 Jan; 49(1):415-22. PubMed ID: 25478850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impact of thin aquitards on two-dimensional solute transport in an aquifer.
    Rezaei A; Zhan H; Zare M
    J Contam Hydrol; 2013 Sep; 152():117-36. PubMed ID: 23906486
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Field-scale forward and back diffusion through low-permeability zones.
    Yang M; Annable MD; Jawitz JW
    J Contam Hydrol; 2017 Jul; 202():47-58. PubMed ID: 28554827
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Impact of matrix diffusion on the migration of groundwater plumes for Perfluoroalkyl acids (PFAAs) and other non-degradable compounds.
    Farhat SK; Newell CJ; Lee SA; Looney BB; Falta RW
    J Contam Hydrol; 2022 May; 247():103987. PubMed ID: 35286952
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of chlorohydrocarbon degradation pathways in aquitards using dual element compound-specific isotope measurements in aquifers.
    Lincker M; Lagneau V; Guillon S; Wanner P
    Chemosphere; 2022 Sep; 303(Pt 2):135131. PubMed ID: 35640688
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Evaluating the impact of back diffusion on groundwater cleanup time.
    Borden RC; Cha KY
    J Contam Hydrol; 2021 Dec; 243():103889. PubMed ID: 34583230
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Contaminant Back Diffusion from Low-Conductivity Matrices: Case Studies of Remedial Strategies.
    Blue J; Boving T; Tuccillo ME; Koplos J; Rose J; Brooks M; Burden D
    Water (Basel); 2023 Feb; 15(3):1-31. PubMed ID: 36959915
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Modeling the influence of coupled mass transfer processes on mass flux downgradient of heterogeneous DNAPL source zones.
    Yang L; Wang X; Mendoza-Sanchez I; Abriola LM
    J Contam Hydrol; 2018 Apr; 211():1-14. PubMed ID: 29525038
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Controls on the persistence of aqueous-phase groundwater contaminants in the presence of reactive back-diffusion.
    Halloran LJS; Hunkeler D
    Sci Total Environ; 2020 Jun; 722():137749. PubMed ID: 32213436
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contaminant transport in a largely-deformed aquitard affected by delayed drainage.
    Li Z; Zhou Z; Dai Y; Dai B
    J Contam Hydrol; 2019 Feb; 221():118-126. PubMed ID: 30773243
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Contribution of the aquitard to the regional groundwater hydrochemistry of the underlying confined aquifer in the Pearl River Delta, China.
    Wang Y; Jiao JJ; Cherry JA; Lee CM
    Sci Total Environ; 2013 Sep; 461-462():663-71. PubMed ID: 23770547
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.