These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
125 related articles for article (PubMed ID: 37146441)
81. Deep learning based domain adaptation for mitochondria segmentation on EM volumes. Franco-Barranco D; Pastor-Tronch J; González-Marfil A; Muñoz-Barrutia A; Arganda-Carreras I Comput Methods Programs Biomed; 2022 Jul; 222():106949. PubMed ID: 35753105 [TBL] [Abstract][Full Text] [Related]
82. RVFace: Reliable Vector Guided Softmax Loss for Face Recognition. Wang X; Wang S; Liang Y; Gu L; Lei Z IEEE Trans Image Process; 2022; 31():2337-2351. PubMed ID: 35235513 [TBL] [Abstract][Full Text] [Related]
83. Evaluation of Deep Neural Networks for Semantic Segmentation of Prostate in T2W MRI. Khan Z; Yahya N; Alsaih K; Ali SSA; Meriaudeau F Sensors (Basel); 2020 Jun; 20(11):. PubMed ID: 32503330 [TBL] [Abstract][Full Text] [Related]
84. Learning fuzzy clustering for SPECT/CT segmentation via convolutional neural networks. Chen J; Li Y; Luna LP; Chung HW; Rowe SP; Du Y; Solnes LB; Frey EC Med Phys; 2021 Jul; 48(7):3860-3877. PubMed ID: 33905560 [TBL] [Abstract][Full Text] [Related]
85. DeepLesionBrain: Towards a broader deep-learning generalization for multiple sclerosis lesion segmentation. Kamraoui RA; Ta VT; Tourdias T; Mansencal B; Manjon JV; Coup P Med Image Anal; 2022 Feb; 76():102312. PubMed ID: 34894571 [TBL] [Abstract][Full Text] [Related]
86. 3D spatial priors for semi-supervised organ segmentation with deep convolutional neural networks. Petit O; Thome N; Soler L Int J Comput Assist Radiol Surg; 2022 Jan; 17(1):129-139. PubMed ID: 34750733 [TBL] [Abstract][Full Text] [Related]
87. Calibrated uncertainty estimation for interpretable proton computed tomography image correction using Bayesian deep learning. Nomura Y; Tanaka S; Wang J; Shirato H; Shimizu S; Xing L Phys Med Biol; 2021 Mar; 66(6):065029. PubMed ID: 33626513 [TBL] [Abstract][Full Text] [Related]
89. FEEDNet: a feature enhanced encoder-decoder LSTM network for nuclei instance segmentation for histopathological diagnosis. Deshmukh G; Susladkar O; Makwana D; Chandra Teja R S; Kumar S N; Mittal S Phys Med Biol; 2022 Sep; 67(19):. PubMed ID: 35905732 [No Abstract] [Full Text] [Related]
90. Non-uniform Label Smoothing for Diabetic Retinopathy Grading from Retinal Fundus Images with Deep Neural Networks. Galdran A; Chelbi J; Kobi R; Dolz J; Lombaert H; Ben Ayed I; Chakor H Transl Vis Sci Technol; 2020 Jun; 9(2):34. PubMed ID: 32832207 [TBL] [Abstract][Full Text] [Related]
91. Labeling confidence for uncertainty-aware histology image classification. Del Amor R; Silva-Rodríguez J; Naranjo V Comput Med Imaging Graph; 2023 Jul; 107():102231. PubMed ID: 37087899 [TBL] [Abstract][Full Text] [Related]
92. Addressing Deep Learning Model Calibration Using Evidential Neural Networks And Uncertainty-Aware Training. Dawood T; Chan E; Razavi R; King AP; Puyol-Antón E Proc IEEE Int Symp Biomed Imaging; 2023 Apr; 34():1-5. PubMed ID: 39253557 [TBL] [Abstract][Full Text] [Related]
93. Embedded prompt tuning: Towards enhanced calibration of pretrained models for medical images. Zu W; Xie S; Zhao Q; Li G; Ma L Med Image Anal; 2024 Oct; 97():103258. PubMed ID: 38996667 [TBL] [Abstract][Full Text] [Related]
94. Role of calibration in uncertainty-based referral for deep learning. Zhang R; Gatsonis C; Steingrimsson JA Stat Methods Med Res; 2023 May; 32(5):927-943. PubMed ID: 37011026 [TBL] [Abstract][Full Text] [Related]
95. Inverse Image Frequency for Long-Tailed Image Recognition. Alexandridis KP; Luo S; Nguyen A; Deng J; Zafeiriou S IEEE Trans Image Process; 2023; 32():5721-5736. PubMed ID: 37824316 [TBL] [Abstract][Full Text] [Related]
96. Uncovering the Over-Smoothing Challenge in Image Super-Resolution: Entropy-Based Quantification and Contrastive Optimization. Xu T; Li L; Mi P; Zheng X; Chao F; Ji R; Tian Y; Shen Q IEEE Trans Pattern Anal Mach Intell; 2024 Sep; 46(9):6199-6215. PubMed ID: 38502629 [TBL] [Abstract][Full Text] [Related]
97. Label-Aware Calibration and Relation-Preserving in Visual Intention Understanding. Shi Q; Ye M; Huang W; Ruan W; Du B IEEE Trans Image Process; 2024; 33():2627-2638. PubMed ID: 38536683 [TBL] [Abstract][Full Text] [Related]
98. What are the Desired Characteristics of Calibration Sets? Identifying Correlates on Long Form Scientific Summarization. Adams G; Nguyen BH; Smith J; Xia Y; Xie S; Ostropolets A; Deb B; Chen YJ; Naumann T; Elhadad N Proc Conf Assoc Comput Linguist Meet; 2023 Jul; 2023():10520-10542. PubMed ID: 38689884 [TBL] [Abstract][Full Text] [Related]
99. Efficient Loss Landscape Reshaping for Convolutional Neural Networks. Chen L; Jin L; Shang M IEEE Trans Neural Netw Learn Syst; 2024 Oct; PP():. PubMed ID: 39352822 [TBL] [Abstract][Full Text] [Related]
100. DOMINO: Domain-aware loss for deep learning calibration. Stolte SE; Volle K; Indahlastari A; Albizu A; Woods AJ; Brink K; Hale M; Fang R Softw Impacts; 2023 Mar; 15():. PubMed ID: 37091721 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]