BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

315 related articles for article (PubMed ID: 37146581)

  • 21. Pluripotent Stem Cell-Derived Human Liver Organoids Enter the Realm of High-Throughput Drug Screening.
    Khetani SR
    Gastroenterology; 2021 Feb; 160(3):653-655. PubMed ID: 33307027
    [No Abstract]   [Full Text] [Related]  

  • 22. Human intestinal organoid-derived PDGFRα + mesenchymal stroma enables proliferation and maintenance of LGR4 + epithelial stem cells.
    Chen J; Horiuchi S; Kuramochi S; Kawasaki T; Kawasumi H; Akiyama S; Arai T; Morinaga K; Kimura T; Kiyono T; Akutsu H; Ishida S; Umezawa A
    Stem Cell Res Ther; 2024 Jan; 15(1):16. PubMed ID: 38229108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Human Pluripotent Stem Cell-Derived Cardiac Cells: Application in Disease Modeling, Cell Therapy, and Drug Discovery.
    Huang J; Feng Q; Wang L; Zhou B
    Front Cell Dev Biol; 2021; 9():655161. PubMed ID: 33869218
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Exploiting pluripotent stem cell technology for drug discovery, screening, safety, and toxicology assessments.
    McGivern JV; Ebert AD
    Adv Drug Deliv Rev; 2014 Apr; 69-70():170-8. PubMed ID: 24309014
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The Emerging Role of Neuronal Organoid Models in Drug Discovery: Potential Applications and Hurdles to Implementation.
    Struzyna LA; Watt ML
    Mol Pharmacol; 2021 Apr; 99(4):256-265. PubMed ID: 33547249
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Generating Cerebral Organoids from Human Pluripotent Stem Cells.
    Chew L; Añonuevo A; Knock E
    Methods Mol Biol; 2022; 2389():177-199. PubMed ID: 34558011
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Bioengineering Human Pluripotent Stem Cell-Derived Retinal Organoids and Optic Vesicle-Containing Brain Organoids for Ocular Diseases.
    Arthur P; Muok L; Nathani A; Zeng EZ; Sun L; Li Y; Singh M
    Cells; 2022 Oct; 11(21):. PubMed ID: 36359825
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Generating Kidney Organoids from Human Pluripotent Stem Cells Using Defined Conditions.
    Howden SE; Little MH
    Methods Mol Biol; 2020; 2155():183-192. PubMed ID: 32474877
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Decellularised extracellular matrix-derived peptides from neural retina and retinal pigment epithelium enhance the expression of synaptic markers and light responsiveness of human pluripotent stem cell derived retinal organoids.
    Dorgau B; Felemban M; Hilgen G; Kiening M; Zerti D; Hunt NC; Doherty M; Whitfield P; Hallam D; White K; Ding Y; Krasnogor N; Al-Aama J; Asfour HZ; Sernagor E; Lako M
    Biomaterials; 2019 Apr; 199():63-75. PubMed ID: 30738336
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Human pluripotent stem cell-derived kidney organoids: Current progress and challenges.
    Long HY; Qian ZP; Lan Q; Xu YJ; Da JJ; Yu FX; Zha Y
    World J Stem Cells; 2024 Feb; 16(2):114-125. PubMed ID: 38455108
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of proximal tubule-enhanced kidney organoids from human pluripotent stem cells.
    Vanslambrouck JM; Tan KS; Mah S; Little MH
    Nat Protoc; 2023 Nov; 18(11):3229-3252. PubMed ID: 37770563
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Screening Platforms for Genetic Epilepsies-Zebrafish, iPSC-Derived Neurons, and Organoids.
    Shcheglovitov A; Peterson RT
    Neurotherapeutics; 2021 Jul; 18(3):1478-1489. PubMed ID: 34595731
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Differentiation of retinal organoids from human pluripotent stem cells.
    Fligor CM; Huang KC; Lavekar SS; VanderWall KB; Meyer JS
    Methods Cell Biol; 2020; 159():279-302. PubMed ID: 32586447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Advances in liver organoids: model systems for liver disease.
    Lee J; Mun SJ; Shin Y; Lee S; Son MJ
    Arch Pharm Res; 2022 Jun; 45(6):390-400. PubMed ID: 35661984
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Functional Characterization of Human Pluripotent Stem Cell-Derived Models of the Brain with Microelectrode Arrays.
    Pelkonen A; Pistono C; Klecki P; Gómez-Budia M; Dougalis A; Konttinen H; Stanová I; Fagerlund I; Leinonen V; Korhonen P; Malm T
    Cells; 2021 Dec; 11(1):. PubMed ID: 35011667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Advance in Human Epithelial-Derived Organoids Research.
    Li F; Zhang P; Wu S; Yuan L; Liu Z
    Mol Pharm; 2021 Nov; 18(11):3931-3950. PubMed ID: 34582198
    [TBL] [Abstract][Full Text] [Related]  

  • 37. From engineered heart tissue to cardiac organoid.
    Cho J; Lee H; Rah W; Chang HJ; Yoon YS
    Theranostics; 2022; 12(6):2758-2772. PubMed ID: 35401829
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Human pluripotent stem cells for the modelling and treatment of respiratory diseases.
    Goldsteen PA; Yoseif C; Dolga AM; Gosens R
    Eur Respir Rev; 2021 Sep; 30(161):. PubMed ID: 34348980
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Insights Into Human Development and Disease From Human Pluripotent Stem Cell Derived Intestinal Organoids.
    Daoud A; Múnera JO
    Front Med (Lausanne); 2019; 6():297. PubMed ID: 31956653
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Patterning of brain organoids derived from human pluripotent stem cells.
    Zhang Z; O'Laughlin R; Song H; Ming GL
    Curr Opin Neurobiol; 2022 Jun; 74():102536. PubMed ID: 35405627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.