These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 37146800)

  • 1. The impact of extensive agricultural water drainage on the hydrology of the Kleine Nete watershed, Belgium.
    Yimer EA; Riakhi FE; Bailey RT; Nossent J; van Griensven A
    Sci Total Environ; 2023 Aug; 885():163903. PubMed ID: 37146800
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluating the contribution of subsurface drainage to watershed water yield using SWAT+ with groundwater modeling.
    Bailey RT; Bieger K; Flores L; Tomer M
    Sci Total Environ; 2022 Jan; 802():149962. PubMed ID: 34781586
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A new interpretable streamflow prediction approach based on SWAT-BiLSTM and SHAP.
    Huang F; Zhang X
    Environ Sci Pollut Res Int; 2024 Apr; 31(16):23896-23908. PubMed ID: 38430443
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced streamflow prediction with SWAT using support vector regression for spatial calibration: A case study in the Illinois River watershed, U.S.
    Yuan L; Forshay KJ
    PLoS One; 2021; 16(4):e0248489. PubMed ID: 33844687
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assessing controls on selenium fate and transport in watersheds using the SWAT model.
    Neupane P; Bailey RT; Tavakoli-Kivi S
    Sci Total Environ; 2020 Oct; 738():140318. PubMed ID: 32806359
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Enhancing daily streamflow simulation using the coupled SWAT-BiLSTM approach for climate change impact assessment in Hai-River Basin.
    Zhang X; Qi Y; Liu F; Li H; Sun S
    Sci Rep; 2023 Sep; 13(1):15169. PubMed ID: 37704827
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the cumulative impacts of geographically isolated wetlands on watershed hydrology using the SWAT model coupled with improved wetland modules.
    Lee S; Yeo IY; Lang MW; Sadeghi AM; McCarty GW; Moglen GE; Evenson GR
    J Environ Manage; 2018 Oct; 223():37-48. PubMed ID: 29886149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling Agricultural Watersheds with the Soil and Water Assessment Tool (SWAT): Calibration and Validation with a Novel Procedure for Spatially Explicit HRUs.
    Teshager AD; Gassman PW; Secchi S; Schoof JT; Misgna G
    Environ Manage; 2016 Apr; 57(4):894-911. PubMed ID: 26616430
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Using SWAT to Evaluate Streamflow and Lake Sediment Loading in the Xinjiang River Basin with Limited Data.
    Yuan L; Forshay KJ
    Water (Basel); 2019 Dec; 12(1):39. PubMed ID: 32983578
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Improved forest dynamics leads to better hydrological predictions in watershed modeling.
    Haas H; Kalin L; Srivastava P
    Sci Total Environ; 2022 May; 821():153180. PubMed ID: 35051464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Challenges Calibrating Hydrology for Groundwater-Fed Wetlands: a Headwater Wetland Case Study.
    Ramesh R; Kalin L; Hantush M; Rezaeinzadeh M; Anderson C
    Environ Model Assess (Dordr); 2020 Jan; 25():355-371. PubMed ID: 35574564
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Exploring the multiscale hydrologic regulation of multipond systems in a humid agricultural catchment.
    Chen W; Nover D; Yen H; Xia Y; He B; Sun W; Viers J
    Water Res; 2020 Oct; 184():115987. PubMed ID: 32688156
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Physically based vs. data-driven models for streamflow and reservoir volume prediction at a data-scarce semi-arid basin.
    Özdoğan-Sarıkoç G; Dadaser-Celik F
    Environ Sci Pollut Res Int; 2024 Jun; 31(27):39098-39119. PubMed ID: 38811456
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrologic model predictability improves with spatially explicit calibration using remotely sensed evapotranspiration and biophysical parameters.
    Rajib A; Evenson GR; Golden HE; Lane CR
    J Hydrol (Amst); 2018; 567():668-683. PubMed ID: 31395990
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling hydrology, groundwater recharge and non-point nitrate loadings in the Himalayan Upper Yamuna basin.
    Narula KK; Gosain AK
    Sci Total Environ; 2013 Dec; 468-469 Suppl():S102-16. PubMed ID: 23452999
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A SWAT model validation of nested-scale contemporaneous stream flow, suspended sediment and nutrients from a multiple-land-use watershed of the central USA.
    Zeiger SJ; Hubbart JA
    Sci Total Environ; 2016 Dec; 572():232-243. PubMed ID: 27501422
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intercomparison of SWAT and ANN techniques in simulating streamflows in the Astore Basin of the Upper Indus.
    Khan S; Khan AU; Khan M; Khan FA; Khan S; Khan J
    Water Sci Technol; 2023 Oct; 88(7):1847-1862. PubMed ID: 37831000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Simulating the influence of integrated crop-livestock systems on water yield at watershed scale.
    Pérez-Gutiérrez JD; Kumar S
    J Environ Manage; 2019 Jun; 239():385-394. PubMed ID: 30925408
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Spatial quantification of groundwater abstraction in the irrigated Indus basin.
    Cheema MJ; Immerzeel WW; Bastiaanssen WG
    Ground Water; 2014; 52(1):25-36. PubMed ID: 23441997
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.