These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 37147085)

  • 1. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties.
    Singh AK; Pomorski A; Wu S; Peris-Díaz MD; Czepczyńska-Krężel H; Krężel A
    Metallomics; 2023 Jun; 15(6):. PubMed ID: 37147085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species.
    Peris-Díaz MD; Guran R; Domene C; de Los Rios V; Zitka O; Adam V; Krężel A
    J Am Chem Soc; 2021 Oct; 143(40):16486-16501. PubMed ID: 34477370
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2.
    Drozd A; Wojewska D; Peris-Díaz MD; Jakimowicz P; Krężel A
    Metallomics; 2018 Apr; 10(4):595-613. PubMed ID: 29561927
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.
    Mosna K; Jurczak K; Krężel A
    Metallomics; 2023 Oct; 15(10):. PubMed ID: 37804185
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From methodological limitations to the function of metallothioneins - a guide to approaches for determining weak, moderate, and tight affinity zinc sites.
    Pomorski A; Drozd A; Kocyła A; Krężel A
    Metallomics; 2023 May; 15(5):. PubMed ID: 37113075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.
    Pinter TB; Stillman MJ
    Biochem J; 2015 Nov; 471(3):347-56. PubMed ID: 26475450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT.
    Kowald GR; Stürzenbaum SR; Blindauer CA
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26742040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc(II) is required for the in vivo and in vitro folding of mouse copper metallothionein in two domains.
    Bofill R; Capdevila M; Cols N; Atrian S; Gonzàlez-Duarte P
    J Biol Inorg Chem; 2001 Apr; 6(4):405-17. PubMed ID: 11372199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters.
    Calvo JS; Lopez VM; Meloni G
    Metallomics; 2018 Dec; 10(12):1777-1791. PubMed ID: 30420986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual nanomolar and picomolar Zn(II) binding properties of metallothionein.
    Krezel A; Maret W
    J Am Chem Soc; 2007 Sep; 129(35):10911-21. PubMed ID: 17696343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a.
    Summers KL; Sutherland DE; Stillman MJ
    Biochemistry; 2013 Apr; 52(14):2461-71. PubMed ID: 23506369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.
    Scheller JS; Irvine GW; Stillman MJ
    Dalton Trans; 2018 Mar; 47(11):3613-3637. PubMed ID: 29431781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange.
    Pinter TB; Irvine GW; Stillman MJ
    Biochemistry; 2015 Aug; 54(32):5006-16. PubMed ID: 26167879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana.
    Imam HT; Blindauer CA
    J Biol Inorg Chem; 2018 Jan; 23(1):137-154. PubMed ID: 29218630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Zn²⁺ release from metallothionein.
    Babu CS; Lee YM; Dudev T; Lim C
    J Phys Chem A; 2014 Oct; 118(39):9244-52. PubMed ID: 25116831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant metallothionein domains: functional insight into physiological metal binding and protein folding.
    Domènech J; Mir G; Huguet G; Capdevila M; Molinas M; Atrian S
    Biochimie; 2006 Jun; 88(6):583-93. PubMed ID: 16377055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc binds non-cooperatively to human liver metallothionein 2a at physiological pH.
    Jayawardena DP; Heinemann IU; Stillman MJ
    Biochem Biophys Res Commun; 2017 Nov; 493(1):650-653. PubMed ID: 28865957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the Sp1 zinc finger 3 peptide: coordination chemistry, redox reactions, and metal binding competition with metallothionein.
    Posewitz MC; Wilcox DE
    Chem Res Toxicol; 1995 Dec; 8(8):1020-8. PubMed ID: 8605284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium in metallothioneins.
    Freisinger E; Vašák M
    Met Ions Life Sci; 2013; 11():339-71. PubMed ID: 23430778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.