BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 37147085)

  • 1. The connection of α- and β-domains in mammalian metallothionein-2 differentiates Zn(II) binding affinities, affects folding, and determines zinc buffering properties.
    Singh AK; Pomorski A; Wu S; Peris-Díaz MD; Czepczyńska-Krężel H; Krężel A
    Metallomics; 2023 Jun; 15(6):. PubMed ID: 37147085
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2.
    Drozd A; Wojewska D; Peris-Díaz MD; Jakimowicz P; Krężel A
    Metallomics; 2018 Apr; 10(4):595-613. PubMed ID: 29561927
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.
    Mosna K; Jurczak K; Krężel A
    Metallomics; 2023 Oct; 15(10):. PubMed ID: 37804185
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An Integrated Mass Spectrometry and Molecular Dynamics Simulations Approach Reveals the Spatial Organization Impact of Metal-Binding Sites on the Stability of Metal-Depleted Metallothionein-2 Species.
    Peris-Díaz MD; Guran R; Domene C; de Los Rios V; Zitka O; Adam V; Krężel A
    J Am Chem Soc; 2021 Oct; 143(40):16486-16501. PubMed ID: 34477370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. From methodological limitations to the function of metallothioneins - a guide to approaches for determining weak, moderate, and tight affinity zinc sites.
    Pomorski A; Drozd A; Kocyła A; Krężel A
    Metallomics; 2023 May; 15(5):. PubMed ID: 37113075
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Putting the pieces into place: Properties of intact zinc metallothionein 1A determined from interaction of its isolated domains with carbonic anhydrase.
    Pinter TB; Stillman MJ
    Biochem J; 2015 Nov; 471(3):347-56. PubMed ID: 26475450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Functions of Metamorphic Metallothioneins in Zinc and Copper Metabolism.
    Krężel A; Maret W
    Int J Mol Sci; 2017 Jun; 18(6):. PubMed ID: 28598392
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Earthworm Lumbricus rubellus MT-2: Metal Binding and Protein Folding of a True Cadmium-MT.
    Kowald GR; Stürzenbaum SR; Blindauer CA
    Int J Mol Sci; 2016 Jan; 17(1):. PubMed ID: 26742040
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Zinc(II) is required for the in vivo and in vitro folding of mouse copper metallothionein in two domains.
    Bofill R; Capdevila M; Cols N; Atrian S; Gonzàlez-Duarte P
    J Biol Inorg Chem; 2001 Apr; 6(4):405-17. PubMed ID: 11372199
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Non-coordinative metal selectivity bias in human metallothioneins metal-thiolate clusters.
    Calvo JS; Lopez VM; Meloni G
    Metallomics; 2018 Dec; 10(12):1777-1791. PubMed ID: 30420986
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Dual nanomolar and picomolar Zn(II) binding properties of metallothionein.
    Krezel A; Maret W
    J Am Chem Soc; 2007 Sep; 129(35):10911-21. PubMed ID: 17696343
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Single-domain metallothioneins: evidence of the onset of clustered metal binding domains in Zn-rhMT 1a.
    Summers KL; Sutherland DE; Stillman MJ
    Biochemistry; 2013 Apr; 52(14):2461-71. PubMed ID: 23506369
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Unravelling the mechanistic details of metal binding to mammalian metallothioneins from stoichiometric, kinetic, and binding affinity data.
    Scheller JS; Irvine GW; Stillman MJ
    Dalton Trans; 2018 Mar; 47(11):3613-3637. PubMed ID: 29431781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Domain Selection in Metallothionein 1A: Affinity-Controlled Mechanisms of Zinc Binding and Cadmium Exchange.
    Pinter TB; Irvine GW; Stillman MJ
    Biochemistry; 2015 Aug; 54(32):5006-16. PubMed ID: 26167879
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Differential reactivity of closely related zinc(II)-binding metallothioneins from the plant Arabidopsis thaliana.
    Imam HT; Blindauer CA
    J Biol Inorg Chem; 2018 Jan; 23(1):137-154. PubMed ID: 29218630
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling Zn²⁺ release from metallothionein.
    Babu CS; Lee YM; Dudev T; Lim C
    J Phys Chem A; 2014 Oct; 118(39):9244-52. PubMed ID: 25116831
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Plant metallothionein domains: functional insight into physiological metal binding and protein folding.
    Domènech J; Mir G; Huguet G; Capdevila M; Molinas M; Atrian S
    Biochimie; 2006 Jun; 88(6):583-93. PubMed ID: 16377055
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Zinc binds non-cooperatively to human liver metallothionein 2a at physiological pH.
    Jayawardena DP; Heinemann IU; Stillman MJ
    Biochem Biophys Res Commun; 2017 Nov; 493(1):650-653. PubMed ID: 28865957
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Properties of the Sp1 zinc finger 3 peptide: coordination chemistry, redox reactions, and metal binding competition with metallothionein.
    Posewitz MC; Wilcox DE
    Chem Res Toxicol; 1995 Dec; 8(8):1020-8. PubMed ID: 8605284
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cadmium in metallothioneins.
    Freisinger E; Vašák M
    Met Ions Life Sci; 2013; 11():339-71. PubMed ID: 23430778
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.