These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 37147284)

  • 1. Probing excitations and cooperatively rearranging regions in deeply supercooled liquids.
    Ortlieb L; Ingebrigtsen TS; Hallett JE; Turci F; Royall CP
    Nat Commun; 2023 May; 14(1):2621. PubMed ID: 37147284
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Emergent facilitation and glassy dynamics in supercooled liquids.
    Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2024 Jun; 121(23):e2322592121. PubMed ID: 38805280
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Localized Excitations and the Morphology of Cooperatively Rearranging Regions in a Colloidal Glass-Forming Liquid.
    Gokhale S; Ganapathy R; Nagamanasa KH; Sood AK
    Phys Rev Lett; 2016 Feb; 116(6):068305. PubMed ID: 26919021
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Do String-like Cooperative Motions Predict Relaxation Times in Glass-Forming Liquids?
    Hung JH; Simmons DS
    J Phys Chem B; 2020 Jan; 124(1):266-276. PubMed ID: 31886663
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cooperatively rearranging regions change shape near the mode-coupling crossover for colloidal liquids on a sphere.
    Singh N; Sood AK; Ganapathy R
    Nat Commun; 2020 Oct; 11(1):4967. PubMed ID: 33009399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamic Heterogeneities in Colloidal Supercooled Liquids: Experimental Tests of Inhomogeneous Mode Coupling Theory.
    Mishra CK; Habdas P; Yodh AG
    J Phys Chem B; 2019 Jun; 123(24):5181-5188. PubMed ID: 31132279
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dynamical facilitation governs glassy dynamics in suspensions of colloidal ellipsoids.
    Mishra CK; Hima Nagamanasa K; Ganapathy R; Sood AK; Gokhale S
    Proc Natl Acad Sci U S A; 2014 Oct; 111(43):15362-7. PubMed ID: 25313030
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural origin of excitations in a colloidal glass-former.
    Ganapathi D; Sood AK; Ganapathy R
    J Chem Phys; 2022 Jun; 156(21):214502. PubMed ID: 35676137
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dynamically correlated regions and configurational entropy in supercooled liquids.
    Capaccioli S; Ruocco G; Zamponi F
    J Phys Chem B; 2008 Aug; 112(34):10652-8. PubMed ID: 18671368
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Communication: Towards first principles theory of relaxation in supercooled liquids formulated in terms of cooperative motion.
    Freed KF
    J Chem Phys; 2014 Oct; 141(14):141102. PubMed ID: 25318708
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Local structure in deeply supercooled liquids exhibits growing lengthscales and dynamical correlations.
    Hallett JE; Turci F; Royall CP
    Nat Commun; 2018 Aug; 9(1):3272. PubMed ID: 30115905
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the ergodicity of supercooled molecular glass-forming liquids at the dynamical arrest: the o-terphenyl case.
    Mallamace F; Corsaro C; Leone N; Villari V; Micali N; Chen SH
    Sci Rep; 2014 Jan; 4():3747. PubMed ID: 24434872
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Inherent-state melting and the onset of glassy dynamics in two-dimensional supercooled liquids.
    Fraggedakis D; Hasyim MR; Mandadapu KK
    Proc Natl Acad Sci U S A; 2023 Apr; 120(14):e2209144120. PubMed ID: 37000846
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the dynamical slowing down process in soft glassy colloidal suspensions: comparisons with supercooled liquids.
    Saha D; Joshi YM; Bandyopadhyay R
    Soft Matter; 2014 May; 10(18):3292-300. PubMed ID: 24637644
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Facilitation, complexity growth, mode coupling, and activated dynamics in supercooled liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Proc Natl Acad Sci U S A; 2008 Oct; 105(42):16077-82. PubMed ID: 18927234
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Microscopic models of mode-coupling theory: the F12 scenario.
    Arenzon JJ; Sellitto M
    J Chem Phys; 2012 Aug; 137(8):084501. PubMed ID: 22938244
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Does equilibrium polymerization describe the dynamic heterogeneity of glass-forming liquids?
    Douglas JF; Dudowicz J; Freed KF
    J Chem Phys; 2006 Oct; 125(14):144907. PubMed ID: 17042650
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging the gap between the mode coupling and the random first order transition theories of structural relaxation in liquids.
    Bhattacharyya SM; Bagchi B; Wolynes PG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2005 Sep; 72(3 Pt 1):031509. PubMed ID: 16241446
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Structural relaxation in supercooled water by time-resolved spectroscopy.
    Torre R; Bartolini P; Righini R
    Nature; 2004 Mar; 428(6980):296-9. PubMed ID: 15029190
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mosaic multistate scenario versus one-state description of supercooled liquids.
    Cavagna A; Grigera TS; Verrocchio P
    Phys Rev Lett; 2007 May; 98(18):187801. PubMed ID: 17501609
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.