These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
194 related articles for article (PubMed ID: 37147292)
1. Optimal enzyme utilization suggests that concentrations and thermodynamics determine binding mechanisms and enzyme saturations. Sahin A; Weilandt DR; Hatzimanikatis V Nat Commun; 2023 May; 14(1):2618. PubMed ID: 37147292 [TBL] [Abstract][Full Text] [Related]
2. Quantifying the flux as the driving force for nonequilibrium dynamics and thermodynamics in non-Michaelis-Menten enzyme kinetics. Liu Q; Wang J Proc Natl Acad Sci U S A; 2020 Jan; 117(2):923-930. PubMed ID: 31879351 [TBL] [Abstract][Full Text] [Related]
3. An investigation of the relationships between rate and driving force in simple uncatalysed and enzyme-catalysed reactions with applications of the findings to chemiosmotic reactions. Stoner CD Biochem J; 1992 Apr; 283 ( Pt 2)(Pt 2):541-52. PubMed ID: 1533514 [TBL] [Abstract][Full Text] [Related]
4. Two-dimensional reaction free energy surfaces of catalytic reaction: effects of protein conformational dynamics on enzyme catalysis. Min W; Xie XS; Bagchi B J Phys Chem B; 2008 Jan; 112(2):454-66. PubMed ID: 18085768 [TBL] [Abstract][Full Text] [Related]
5. A note on the kinetics of enzyme action: a decomposition that highlights thermodynamic effects. Noor E; Flamholz A; Liebermeister W; Bar-Even A; Milo R FEBS Lett; 2013 Sep; 587(17):2772-7. PubMed ID: 23892083 [TBL] [Abstract][Full Text] [Related]
7. Evolutionary optimization of the catalytic effectiveness of an enzyme. Burbaum JJ; Raines RT; Albery WJ; Knowles JR Biochemistry; 1989 Nov; 28(24):9293-305. PubMed ID: 2611230 [TBL] [Abstract][Full Text] [Related]
8. A model of the mechanism of enzyme action in terms of protein conformational relaxation. Averbukh IS; Blumenfeld LA; Kovarsky VA; Perelman NF Biochim Biophys Acta; 1986 Sep; 873(2):290-6. PubMed ID: 3756178 [TBL] [Abstract][Full Text] [Related]
9. Rethinking fundamentals of enzyme action. Northrop DB Adv Enzymol Relat Areas Mol Biol; 1999; 73():25-55, ix. PubMed ID: 10218105 [TBL] [Abstract][Full Text] [Related]
10. A guide to the Michaelis-Menten equation: steady state and beyond. Srinivasan B FEBS J; 2022 Oct; 289(20):6086-6098. PubMed ID: 34270860 [TBL] [Abstract][Full Text] [Related]
11. Perturbation theory in the catalytic rate constant of the Henri-Michaelis-Menten enzymatic reaction. Bakalis E; Kosmas M; Papamichael EM Bull Math Biol; 2012 Nov; 74(11):2535-46. PubMed ID: 22926529 [TBL] [Abstract][Full Text] [Related]
12. Kinetics and thermodynamics of metabolite transfer between enzymes. Smolen P; Keizer J Biophys Chem; 1990 Nov; 38(3):241-63. PubMed ID: 2076452 [TBL] [Abstract][Full Text] [Related]
13. Characterization of Enzymatic Reactions Using ITC. Zambelli B Methods Mol Biol; 2019; 1964():251-266. PubMed ID: 30929248 [TBL] [Abstract][Full Text] [Related]
14. Enzyme free energy profiles: Can substrate binding be nonspontaneous? Can ground state interactions enhance catalysis? Silverstein TP Biophys Chem; 2021 Jul; 274():106606. PubMed ID: 33945990 [TBL] [Abstract][Full Text] [Related]
15. Evolutionary dynamics of enzymes. Demetrius L Protein Eng; 1995 Aug; 8(8):791-800. PubMed ID: 8637848 [TBL] [Abstract][Full Text] [Related]
16. Transition States and transition state analogue interactions with enzymes. Schramm VL Acc Chem Res; 2015 Apr; 48(4):1032-9. PubMed ID: 25848811 [TBL] [Abstract][Full Text] [Related]