BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37147302)

  • 1. The mitochondrial protein TIMM44 is required for angiogenesis in vitro and in vivo.
    Ma ZR; Li HP; Cai SZ; Du SY; Chen X; Yao J; Cao X; Zhen YF; Wang Q
    Cell Death Dis; 2023 May; 14(5):307. PubMed ID: 37147302
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A first-in-class TIMM44 blocker inhibits bladder cancer cell growth.
    Zhang L; Shi X; Zhang L; Mi Y; Zuo L; Gao S
    Cell Death Dis; 2024 Mar; 15(3):204. PubMed ID: 38467612
    [TBL] [Abstract][Full Text] [Related]  

  • 3. TIMM44 is a potential therapeutic target of human glioma.
    Guo YZ; Chen G; Huang M; Wang Y; Liu YY; Jiang Q; Cao C; Liu F
    Theranostics; 2022; 12(17):7586-7602. PubMed ID: 36438483
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The requirement of the mitochondrial protein NDUFS8 for angiogenesis.
    Xiong QW; Jiang K; Shen XW; Ma ZR; Yan XM; Xia H; Cao X
    Cell Death Dis; 2024 Apr; 15(4):253. PubMed ID: 38594244
    [TBL] [Abstract][Full Text] [Related]  

  • 5. G protein subunit alpha i2's pivotal role in angiogenesis.
    Bai CW; Lu L; Zhang JN; Zhou C; Ni YC; Li KR; Yao J; Zhou XZ; Lan CG; Cao C
    Theranostics; 2024; 14(5):2190-2209. PubMed ID: 38505600
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Translocase of inner mitochondrial membrane 44 alters the mitochondrial fusion and fission dynamics and protects from type 2 diabetes.
    Wang Y; Katayama A; Terami T; Han X; Nunoue T; Zhang D; Teshigawara S; Eguchi J; Nakatsuka A; Murakami K; Ogawa D; Furuta Y; Makino H; Wada J
    Metabolism; 2015 Jun; 64(6):677-88. PubMed ID: 25749183
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification of the mitochondrial protein POLRMT as a potential therapeutic target of prostate cancer.
    Li X; Yao L; Wang T; Gu X; Wu Y; Jiang T
    Cell Death Dis; 2023 Oct; 14(10):665. PubMed ID: 37816734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Gαi1/3 mediate Netrin-1-CD146-activated signaling and angiogenesis.
    Li Y; Chai JL; Shi X; Feng Y; Li JJ; Zhou LN; Cao C; Li KR
    Theranostics; 2023; 13(7):2319-2336. PubMed ID: 37153740
    [TBL] [Abstract][Full Text] [Related]  

  • 9. SCF/c-Kit-activated signaling and angiogenesis require Gαi1 and Gαi3.
    Shan HJ; Jiang K; Zhao MZ; Deng WJ; Cao WH; Li JJ; Li KR; She C; Luo WF; Yao J; Zhou XZ; Zhang D; Cao C
    Int J Biol Sci; 2023; 19(6):1910-1924. PubMed ID: 37063428
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The requirement of phosphoenolpyruvate carboxykinase 1 for angiogenesis in vitro and in vivo.
    Yao J; Wu XY; Yu Q; Yang SF; Yuan J; Zhang ZQ; Xue JS; Jiang Q; Chen MB; Xue GH; Cao C
    Sci Adv; 2022 May; 8(21):eabn6928. PubMed ID: 35622925
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Endothelial FAM3A positively regulates post-ischaemic angiogenesis.
    Xu W; Liang M; Zhang Y; Huang K; Wang C
    EBioMedicine; 2019 May; 43():32-42. PubMed ID: 31000420
    [TBL] [Abstract][Full Text] [Related]  

  • 12. HuR Promotes Ovarian Cancer Cell Proliferation by Regulating TIMM44 mRNA Stability.
    Yu X; Li Y; Ding Y; Zhang H; Ding N; Lu M
    Cell Biochem Biophys; 2020 Dec; 78(4):447-453. PubMed ID: 32901414
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Isoprostanes inhibit vascular endothelial growth factor-induced endothelial cell migration, tube formation, and cardiac vessel sprouting in vitro, as well as angiogenesis in vivo via activation of the thromboxane A(2) receptor: a potential link between oxidative stress and impaired angiogenesis.
    Benndorf RA; Schwedhelm E; Gnann A; Taheri R; Kom G; Didié M; Steenpass A; Ergün S; Böger RH
    Circ Res; 2008 Oct; 103(9):1037-46. PubMed ID: 18802021
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Activation of transient receptor potential vanilloid 1 accelerates re-endothelialization and inhibits neointimal formation after vascular injury.
    Su L; Zhang Y; He K; Wei S; Pei H; Wang Q; Yang D; Yang Y
    J Vasc Surg; 2017 Jan; 65(1):197-205.e2. PubMed ID: 26947234
    [TBL] [Abstract][Full Text] [Related]  

  • 15. HOXC13-driven TIMM13 overexpression promotes osteosarcoma cell growth.
    Han Q; Yan P; Song R; Liu F; Tian Q
    Cell Death Dis; 2023 Jul; 14(7):398. PubMed ID: 37407582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mitochondrial-targeting antioxidant MitoQ modulates angiogenesis and promotes functional recovery after spinal cord injury.
    Huang T; Shen J; Bao B; Hu W; Sun Y; Zhu T; Lin J; Gao T; Li X; Zheng X
    Brain Res; 2022 Jul; 1786():147902. PubMed ID: 35381215
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Novel germline variants identified in the inner mitochondrial membrane transporter TIMM44 and their role in predisposition to oncocytic thyroid carcinomas.
    Bonora E; Evangelisti C; Bonichon F; Tallini G; Romeo G
    Br J Cancer; 2006 Dec; 95(11):1529-36. PubMed ID: 17088905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The pro-tumorigenic activity of p38γ overexpression in nasopharyngeal carcinoma.
    Yin DP; Zheng YF; Sun P; Yao MY; Xie LX; Dou XW; Tian Y; Liu JS
    Cell Death Dis; 2022 Mar; 13(3):210. PubMed ID: 35246508
    [TBL] [Abstract][Full Text] [Related]  

  • 19. DDA suppresses angiogenesis and tumor growth of colorectal cancer in vivo through decreasing VEGFR2 signaling.
    Huang SW; Lien JC; Kuo SC; Huang TF
    Oncotarget; 2016 Sep; 7(39):63124-63137. PubMed ID: 27517319
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tigecycline as a dual inhibitor of retinoblastoma and angiogenesis via inducing mitochondrial dysfunctions and oxidative damage.
    Xiong Y; Liu W; Huang Q; Wang J; Wang Y; Li H; Fu X
    Sci Rep; 2018 Aug; 8(1):11747. PubMed ID: 30082885
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.