These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

196 related articles for article (PubMed ID: 37147344)

  • 1. Concerted oxygen diffusion across heterogeneous oxide interfaces for intensified propane dehydrogenation.
    Chen S; Luo R; Zhao ZJ; Pei C; Xu Y; Lu Z; Zhao C; Song H; Gong J
    Nat Commun; 2023 May; 14(1):2620. PubMed ID: 37147344
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Tandem propane dehydrogenation and surface oxidation catalysts for selective propylene synthesis.
    Wang W; Chen S; Pei C; Luo R; Sun J; Song H; Sun G; Wang X; Zhao ZJ; Gong J
    Science; 2023 Aug; 381(6660):886-890. PubMed ID: 37498988
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Serendipity in Catalysis Research: Boron-Based Materials for Alkane Oxidative Dehydrogenation.
    Venegas JM; McDermott WP; Hermans I
    Acc Chem Res; 2018 Oct; 51(10):2556-2564. PubMed ID: 30285416
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Low-temperature propane oxidative dehydrogenation over UiO-66 supported vanadia catalysts: Role of support confinement effects.
    Farzaneh A; Moghaddam MS
    J Colloid Interface Sci; 2023 Jan; 629(Pt B):404-416. PubMed ID: 36166967
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Propane dehydrogenation: catalyst development, new chemistry, and emerging technologies.
    Chen S; Chang X; Sun G; Zhang T; Xu Y; Wang Y; Pei C; Gong J
    Chem Soc Rev; 2021 Mar; 50(5):3315-3354. PubMed ID: 33491692
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Zeng L; Mu R; Xiong C; Zhao ZJ; Zhao C; Pei C; Peng L; Luo J; Fan LS; Gong J
    J Am Chem Soc; 2019 Nov; 141(47):18653-18657. PubMed ID: 31703164
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Coupling acid catalysis and selective oxidation over MoO
    Wang X; Pei C; Zhao ZJ; Chen S; Li X; Sun J; Song H; Sun G; Wang W; Chang X; Zhang X; Gong J
    Nat Commun; 2023 Apr; 14(1):2039. PubMed ID: 37041149
    [TBL] [Abstract][Full Text] [Related]  

  • 8. One-dimensional Ga
    Han X; Yang Y; Chen R; Zhou J; Yang X; Wang X; Ji H
    J Colloid Interface Sci; 2024 Jul; 666():76-87. PubMed ID: 38583212
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Research Progress on Propylene Preparation by Propane Dehydrogenation.
    Zuo C; Su Q
    Molecules; 2023 Apr; 28(8):. PubMed ID: 37110826
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Coverage-Dependent Behaviors of Vanadium Oxides for Chemical Looping Oxidative Dehydrogenation.
    Chen S; Pei C; Chang X; Zhao ZJ; Mu R; Xu Y; Gong J
    Angew Chem Int Ed Engl; 2020 Dec; 59(49):22072-22079. PubMed ID: 32833255
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Construction of a Unique Structure of Ru Sites in the RuP Structure for Propane Dehydrogenation.
    Yang T; Zhong Y; Li J; Ma R; Yan H; Liu Y; He Y; Li D
    ACS Appl Mater Interfaces; 2021 Jul; 13(28):33045-33055. PubMed ID: 34232010
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Atomically Dispersed Co
    Wu L; Ren Z; He Y; Yang M; Yu Y; Liu Y; Tan L; Tang Y
    ACS Appl Mater Interfaces; 2021 Oct; 13(41):48934-48948. PubMed ID: 34615351
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Overcoming limitations in propane dehydrogenation by codesigning catalyst-membrane systems.
    Almallahi R; Wortman J; Linic S
    Science; 2024 Mar; 383(6689):1325-1331. PubMed ID: 38513015
    [TBL] [Abstract][Full Text] [Related]  

  • 14. In situ formation of ZnO
    Zhao D; Tian X; Doronkin DE; Han S; Kondratenko VA; Grunwaldt JD; Perechodjuk A; Vuong TH; Rabeah J; Eckelt R; Rodemerck U; Linke D; Jiang G; Jiao H; Kondratenko EV
    Nature; 2021 Nov; 599(7884):234-238. PubMed ID: 34759363
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling the Selectivity of Hydrotalcite-Based Catalyst in the Propane Dehydrogenation Reaction.
    Festa G; Contaldo P; Martino M; Meloni E; Palma V
    Ind Eng Chem Res; 2023 Oct; 62(41):16622-16637. PubMed ID: 37869418
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancements of MOFs in the Field of Propane Oxidative Dehydrogenation for Propylene Production.
    Li ST; Ke M; Zhang J; Peng YL; Chen G
    Molecules; 2024 Mar; 29(6):. PubMed ID: 38542849
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Stable and homogeneous intermetallic alloys by atomic gas-migration for propane dehydrogenation.
    Wei P; Chen S; Luo R; Sun G; Wu K; Fu D; Zhao ZJ; Pei C; Yan N; Gong J
    Nat Commun; 2024 Sep; 15(1):8157. PubMed ID: 39289393
    [TBL] [Abstract][Full Text] [Related]  

  • 18. In Situ Formation of Platinum-Carbon Catalysts in Propane Dehydrogenation.
    Nerl HC; Plodinec M; Götsch T; Skorupska K; Schlögl R; Jones TE; Lunkenbein T
    Angew Chem Int Ed Engl; 2024 Jun; 63(24):e202319887. PubMed ID: 38603634
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Single Vanadium Atoms Anchored on Graphitic Carbon Nitride as a High-Performance Catalyst for Non-oxidative Propane Dehydrogenation.
    Kong N; Fan X; Liu F; Wang L; Lin H; Li Y; Lee ST
    ACS Nano; 2020 May; 14(5):5772-5779. PubMed ID: 32374154
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A Smart Design of Non-Noble Catalysts for Sustainable Propane Dehydrogenation.
    Smith LR; Sun Z; Hutchings GJ
    Angew Chem Int Ed Engl; 2024 Dec; 63(51):e202416080. PubMed ID: 39329435
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.