These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
56 related articles for article (PubMed ID: 3714737)
21. Enzymatic sulfation of quercetin by arylsulfotransferase from a human intestinal bacterium. Koizumi M; Shimizu M; Kobashi K Chem Pharm Bull (Tokyo); 1990 Mar; 38(3):794-6. PubMed ID: 2347024 [TBL] [Abstract][Full Text] [Related]
22. Evaluation of a rumen fermentation balance, corrected for cell synthesis. Demeyer D; Henderickx H; Van Nevel C Proc Nutr Soc; 1972 Sep; 31(2):54A. PubMed ID: 5083278 [No Abstract] [Full Text] [Related]
23. Use of the pig caecum model to mimic the human intestinal metabolism of hispidulin and related compounds. Labib S; Hummel S; Richling E; Humpf HU; Schreier P Mol Nutr Food Res; 2006 Jan; 50(1):78-86. PubMed ID: 16317785 [TBL] [Abstract][Full Text] [Related]
24. Establishment of a limited rumen flora in gnotobiotic lambs fed on a roughage diet. Mann SO; Stewart CS J Gen Microbiol; 1974 Oct; 84(2):379-82. PubMed ID: 4217352 [No Abstract] [Full Text] [Related]
25. Specific interactions of quercetin and other flavonoids with target proteins are revealed by elicited fluorescence. Gutzeit HO; Henker Y; Kind B; Franz A Biochem Biophys Res Commun; 2004 May; 318(2):490-5. PubMed ID: 15120627 [TBL] [Abstract][Full Text] [Related]
26. The pig caecum model: a suitable tool to study the intestinal metabolism of flavonoids. Labib S; Erb A; Kraus M; Wickert T; Richling E Mol Nutr Food Res; 2004 Sep; 48(4):326-32. PubMed ID: 15497184 [TBL] [Abstract][Full Text] [Related]
27. Bio-hydrogen production from cellulose by sequential co-culture of cellulosic hydrogen bacteria of Enterococcus gallinarum G1 and Ethanoigenens harbinense B49. Wang A; Gao L; Ren N; Xu J; Liu C Biotechnol Lett; 2009 Sep; 31(9):1321-6. PubMed ID: 19466556 [TBL] [Abstract][Full Text] [Related]
28. Investigation of the interactions of quercetin and morin with trypsin. Zhang HM; Wang YQ; Zhou QH Luminescence; 2009; 24(5):355-62. PubMed ID: 19449305 [TBL] [Abstract][Full Text] [Related]
29. Hydrogen and methane emissions from beef cattle and their rumen microbial community vary with diet, time after feeding and genotype. Rooke JA; Wallace RJ; Duthie CA; McKain N; de Souza SM; Hyslop JJ; Ross DW; Waterhouse T; Roehe R Br J Nutr; 2014 Aug; 112(3):398-407. PubMed ID: 24780126 [TBL] [Abstract][Full Text] [Related]
30. Interaction of flavonoid compounds with contractile proteins of skeletal muscle. Zyma VL; Miroshnichenko NS; Danilova VM; En Gin E Gen Physiol Biophys; 1988 Apr; 7(2):165-75. PubMed ID: 2968941 [TBL] [Abstract][Full Text] [Related]
31. Superoxide--driven oxidation of quercetin and a simple sensitive assay for determination of superoxide dismutase. Kostyuk VA; Potapovich AI Biochem Int; 1989 Nov; 19(5):1117-24. PubMed ID: 2561443 [TBL] [Abstract][Full Text] [Related]
32. [Lignocellulose degrading bacteria and their genes encoding cellulase/hemicellulase in rumen--a review]. Chen F; Zhu Y; Dong X; Liu L; Huang L; Dai X Wei Sheng Wu Xue Bao; 2010 Aug; 50(8):981-7. PubMed ID: 20931863 [TBL] [Abstract][Full Text] [Related]
33. Anaerobic degradation of some bioflavonoids by microflora of the rumen. Simpson FJ; Jones GA; Wolin EA Can J Microbiol; 1969 Aug; 15(8):972-4. PubMed ID: 5344752 [No Abstract] [Full Text] [Related]
34. Quercetin interacts with calmodulin, a calcium regulatory protein. Nishino H; Naitoh E; Iwashima A; Umezawa K Experientia; 1984 Feb; 40(2):184-5. PubMed ID: 6698173 [TBL] [Abstract][Full Text] [Related]
35. Biochemical investigations of polyphenol degradation enzymes in the phototrophic bacterium Rubrivivax gelatinosus. Cui M; Wei Y; Tan J; Li T; Jiao X; Zhou Y Biochem J; 2023 Nov; 480(21):1753-1766. PubMed ID: 37903000 [TBL] [Abstract][Full Text] [Related]
36. The in vitro metabolism of flavonoids by whole rumen contents and its fractions. Sharma CP; Kaushal GP; Sareen VK; Singh S; Bhatia IS Zentralbl Veterinarmed A; 1981; 28(1):27-34. PubMed ID: 6789578 [No Abstract] [Full Text] [Related]
37. The metabolism and acid degradation of quercetin. MASRI MS; BOOTH AN; DE EDS F Arch Biochem Biophys; 1959 Nov; 85():284-6. PubMed ID: 14422095 [No Abstract] [Full Text] [Related]
38. The skin microbiome and immune system: Potential target for chemoprevention? Sherwani MA; Tufail S; Muzaffar AF; Yusuf N Photodermatol Photoimmunol Photomed; 2018 Jan; 34(1):25-34. PubMed ID: 28766918 [TBL] [Abstract][Full Text] [Related]
39. Chemoprevention in gastrointestinal physiology and disease. Natural products and microbiome. Greiner AK; Papineni RV; Umar S Am J Physiol Gastrointest Liver Physiol; 2014 Jul; 307(1):G1-15. PubMed ID: 24789206 [TBL] [Abstract][Full Text] [Related]
40. Degradation of quercetin and luteolin by Eubacterium ramulus. Braune A; Gütschow M; Engst W; Blaut M Appl Environ Microbiol; 2001 Dec; 67(12):5558-67. PubMed ID: 11722907 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]