These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
137 related articles for article (PubMed ID: 37147491)
1. Enhanced exopolysaccharide production by multi metal tolerant Klebsiella variicolaSMHMZ46 isolated from mines area and application in metal bioremediation. Sharma S; Saraf M Int Microbiol; 2023 Nov; 26(4):1167-1183. PubMed ID: 37147491 [TBL] [Abstract][Full Text] [Related]
2. Heavy metal tolerance, and metal biosorption by exopolysaccharides produced by bacterial strains isolated from marine hydrothermal vents. Munir Ahamed J; Dahms HU; Huang YL Chemosphere; 2024 Mar; 351():141170. PubMed ID: 38219989 [TBL] [Abstract][Full Text] [Related]
3. Exopolymeric substances production by Bacillus cereus KMS3-1 enhanced its biosorption efficiency in removing Cd Mathivanan K; Uthaya Chandirika J; Srinivasan R; Emmanuel Charles P; Rajaram R; Zhang R Environ Res; 2023 Jul; 228():115917. PubMed ID: 37062474 [TBL] [Abstract][Full Text] [Related]
4. Production and functionality of exopolysaccharides in bacteria exposed to a toxic metal environment. Mathivanan K; Chandirika JU; Mathimani T; Rajaram R; Annadurai G; Yin H Ecotoxicol Environ Saf; 2021 Jan; 208():111567. PubMed ID: 33396096 [TBL] [Abstract][Full Text] [Related]
5. Isolation and identification of an exopolysaccharide-producing lactic acid bacterium strain from Chinese Paocai and biosorption of Pb(II) by its exopolysaccharide. Feng M; Chen X; Li C; Nurgul R; Dong M J Food Sci; 2012 Jun; 77(6):T111-7. PubMed ID: 22671533 [TBL] [Abstract][Full Text] [Related]
6. Heavy Metal Stress and Its Consequences on Exopolysaccharide (EPS)-Producing Pantoea agglomerans. Mohite BV; Koli SH; Patil SV Appl Biochem Biotechnol; 2018 Sep; 186(1):199-216. PubMed ID: 29552714 [TBL] [Abstract][Full Text] [Related]
7. Investigation of cadmium and nickel biosorption by Pseudomonas sp. via response surface methodology. Hosseini Zabet A; Ahmady-Asbchin S World J Microbiol Biotechnol; 2023 Mar; 39(5):135. PubMed ID: 36961587 [TBL] [Abstract][Full Text] [Related]
8. Immobilization of exopolymeric substances from bacteria for metal removal: A study on characterization, optimization, reusability and toxicity. Cheah C; Cheow YL; Yien Ting AS J Environ Manage; 2022 Dec; 323():116244. PubMed ID: 36116257 [TBL] [Abstract][Full Text] [Related]
9. Optimization of exopolysaccharide production from Pseudomonas stutzeri AS22 and examination of its metal-binding abilities. Maalej H; Hmidet N; Boisset C; Buon L; Heyraud A; Nasri M J Appl Microbiol; 2015 Feb; 118(2):356-67. PubMed ID: 25376444 [TBL] [Abstract][Full Text] [Related]
10. Metal tolerance and biosorption capacities of bacterial strains isolated from an urban watershed. Pagnucco G; Overfield D; Chamlee Y; Shuler C; Kassem A; Opara S; Najaf H; Abbas L; Coutinho O; Fortuna A; Sulaiman F; Farinas J; Schittenhelm R; Catalfano B; Li X; Tiquia-Arashiro SM Front Microbiol; 2023; 14():1278886. PubMed ID: 37942073 [TBL] [Abstract][Full Text] [Related]
11. Bioreduction of toxicity influenced by bioactive molecules secreted under metal stress by Azotobacter chroococcum. Rizvi A; Ahmed B; Zaidi A; Khan MS Ecotoxicology; 2019 Apr; 28(3):302-322. PubMed ID: 30758729 [TBL] [Abstract][Full Text] [Related]
12. Cadmium(II) sequestration characteristics by two isolates of Synechocystis sp. in terms of exopolysaccharide (EPS) production and monomer composition. Ozturk S; Aslim B; Suludere Z Bioresour Technol; 2010 Dec; 101(24):9742-8. PubMed ID: 20719501 [TBL] [Abstract][Full Text] [Related]
13. Utilization of Pleurotus eryngii biosorbent as an environmental bioremedy for the decontamination of trace cadmium(II) ions from water system. Amin F; Talpur FN; Balouch A; Samoon MK; Afridi HI; Surhio MA Water Sci Technol; 2018 Oct; 78(5-6):1148-1158. PubMed ID: 30339539 [TBL] [Abstract][Full Text] [Related]
14. Biosorption of copper(II) and cadmium(II) by a novel exopolysaccharide secreted from deep-sea mesophilic bacterium. Zhou W; Wang J; Shen B; Hou W; Zhang Y Colloids Surf B Biointerfaces; 2009 Sep; 72(2):295-302. PubMed ID: 19477106 [TBL] [Abstract][Full Text] [Related]
15. Simultaneous removal of Cd (II), Ni (II), and Pb (II) from water by a submerged macrophyte pondweed (Potamogeton malaianus). Lyu R; Gu B; Zhang T; Yang Z Water Environ Res; 2021 Nov; 93(11):2637-2647. PubMed ID: 34331379 [TBL] [Abstract][Full Text] [Related]
16. Carnauba (Copernicia prunifera) palm tree biomass as adsorbent for Pb(II) and Cd(II) from water medium. Oliveira MRF; do Vale Abreu K; Romão ALE; Davi DMB; de Carvalho Magalhães CE; Carrilho ENVM; Alves CR Environ Sci Pollut Res Int; 2021 Apr; 28(15):18941-18952. PubMed ID: 31933097 [TBL] [Abstract][Full Text] [Related]
17. Biosorption of Al(+3) and Cd(+2) by an exopolysaccharide from Lactobacillus rhamnosus. Polak-Berecka M; Szwajgier D; Waśko A J Food Sci; 2014 Nov; 79(11):T2404-8. PubMed ID: 25308465 [TBL] [Abstract][Full Text] [Related]
18. Dynamic removal of Pb(II) by live Dunaliella salina: a competitive uptake and isotherm model study. Ziaei S; Ahmadzadeh H; Es'haghi Z Environ Monit Assess; 2023 May; 195(6):682. PubMed ID: 37193934 [TBL] [Abstract][Full Text] [Related]
19. Characterization of an exopolysaccharide produced by Dhanya BE; Athmika ; Rekha PD 3 Biotech; 2021 Dec; 11(12):491. PubMed ID: 34790515 [TBL] [Abstract][Full Text] [Related]
20. Biosorption Mechanism of Aqueous Pb Cui D; Tan C; Deng H; Gu X; Pi S; Chen T; Zhou L; Li A Archaea; 2020; 2020():8891543. PubMed ID: 32694932 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]