BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

165 related articles for article (PubMed ID: 37147498)

  • 1. CapsNet-MHC predicts peptide-MHC class I binding based on capsule neural networks.
    Kalemati M; Darvishi S; Koohi S
    Commun Biol; 2023 May; 6(1):492. PubMed ID: 37147498
    [TBL] [Abstract][Full Text] [Related]  

  • 2. NN-align. An artificial neural network-based alignment algorithm for MHC class II peptide binding prediction.
    Nielsen M; Lund O
    BMC Bioinformatics; 2009 Sep; 10():296. PubMed ID: 19765293
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep convolutional neural networks for pan-specific peptide-MHC class I binding prediction.
    Han Y; Kim D
    BMC Bioinformatics; 2017 Dec; 18(1):585. PubMed ID: 29281985
    [TBL] [Abstract][Full Text] [Related]  

  • 4. ACME: pan-specific peptide-MHC class I binding prediction through attention-based deep neural networks.
    Hu Y; Wang Z; Hu H; Wan F; Chen L; Xiong Y; Wang X; Zhao D; Huang W; Zeng J
    Bioinformatics; 2019 Dec; 35(23):4946-4954. PubMed ID: 31120490
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Quantification of Uncertainty in Peptide-MHC Binding Prediction Improves High-Affinity Peptide Selection for Therapeutic Design.
    Zeng H; Gifford DK
    Cell Syst; 2019 Aug; 9(2):159-166.e3. PubMed ID: 31176619
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Prediction of peptides binding to MHC class I and II alleles by temporal motif mining.
    Meydan C; Otu HH; Sezerman OU
    BMC Bioinformatics; 2013; 14 Suppl 2(Suppl 2):S13. PubMed ID: 23368521
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Implementing the modular MHC model for predicting peptide binding.
    DeLuca DS; Blasczyk R
    Methods Mol Biol; 2007; 409():261-71. PubMed ID: 18450006
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Toward the prediction of class I and II mouse major histocompatibility complex-peptide-binding affinity: in silico bioinformatic step-by-step guide using quantitative structure-activity relationships.
    Hattotuwagama CK; Doytchinova IA; Flower DR
    Methods Mol Biol; 2007; 409():227-45. PubMed ID: 18450004
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Peptide-Major Histocompatibility Complex Class I Binding Prediction Based on Deep Learning With Novel Feature.
    Zhao T; Cheng L; Zang T; Hu Y
    Front Genet; 2019; 10():1191. PubMed ID: 31850062
    [TBL] [Abstract][Full Text] [Related]  

  • 10. High-Throughput Prediction of MHC Class I and II Neoantigens with MHCnuggets.
    Shao XM; Bhattacharya R; Huang J; Sivakumar IKA; Tokheim C; Zheng L; Hirsch D; Kaminow B; Omdahl A; Bonsack M; Riemer AB; Velculescu VE; Anagnostou V; Pagel KA; Karchin R
    Cancer Immunol Res; 2020 Mar; 8(3):396-408. PubMed ID: 31871119
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Systematically benchmarking peptide-MHC binding predictors: From synthetic to naturally processed epitopes.
    Zhao W; Sher X
    PLoS Comput Biol; 2018 Nov; 14(11):e1006457. PubMed ID: 30408041
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-order neural networks and kernel methods for peptide-MHC binding prediction.
    Kuksa PP; Min MR; Dugar R; Gerstein M
    Bioinformatics; 2015 Nov; 31(22):3600-7. PubMed ID: 26206306
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In silico prediction of peptide-MHC binding affinity using SVRMHC.
    Liu W; Wan J; Meng X; Flower DR; Li T
    Methods Mol Biol; 2007; 409():283-91. PubMed ID: 18450008
    [TBL] [Abstract][Full Text] [Related]  

  • 14. IConMHC: a deep learning convolutional neural network model to predict peptide and MHC-I binding affinity.
    Pei B; Hsu YH
    Immunogenetics; 2020 Jul; 72(5):295-304. PubMed ID: 32577798
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method.
    Nielsen M; Lundegaard C; Lund O
    BMC Bioinformatics; 2007 Jul; 8():238. PubMed ID: 17608956
    [TBL] [Abstract][Full Text] [Related]  

  • 16. RPEMHC: improved prediction of MHC-peptide binding affinity by a deep learning approach based on residue-residue pair encoding.
    Wang X; Wu T; Jiang Y; Chen T; Pan D; Jin Z; Xie J; Quan L; Lyu Q
    Bioinformatics; 2024 Jan; 40(1):. PubMed ID: 38175759
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Improved prediction of MHC class I binders/non-binders peptides through artificial neural network using variable learning rate: SARS corona virus, a case study.
    Soam SS; Bhasker B; Mishra BN
    Adv Exp Med Biol; 2011; 696():223-9. PubMed ID: 21431562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shift-invariant adaptive double threading: learning MHC II-peptide binding.
    Zaitlen N; Reyes-Gomez M; Heckerman D; Jojic N
    J Comput Biol; 2008 Sep; 15(7):927-42. PubMed ID: 18771399
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning pan-specific model for interpretable MHC-I peptide binding prediction with improved attention mechanism.
    Jin J; Liu Z; Nasiri A; Cui Y; Louis SY; Zhang A; Zhao Y; Hu J
    Proteins; 2021 Jul; 89(7):866-883. PubMed ID: 33594723
    [TBL] [Abstract][Full Text] [Related]  

  • 20. POPI: predicting immunogenicity of MHC class I binding peptides by mining informative physicochemical properties.
    Tung CW; Ho SY
    Bioinformatics; 2007 Apr; 23(8):942-9. PubMed ID: 17384427
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.