BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 37147498)

  • 21. Performance Evaluation of MHC Class-I Binding Prediction Tools Based on an Experimentally Validated MHC-Peptide Binding Data Set.
    Bonsack M; Hoppe S; Winter J; Tichy D; Zeller C; Küpper MD; Schitter EC; Blatnik R; Riemer AB
    Cancer Immunol Res; 2019 May; 7(5):719-736. PubMed ID: 30902818
    [TBL] [Abstract][Full Text] [Related]  

  • 22. MultiRTA: a simple yet reliable method for predicting peptide binding affinities for multiple class II MHC allotypes.
    Bordner AJ; Mittelmann HD
    BMC Bioinformatics; 2010 Sep; 11():482. PubMed ID: 20868497
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Determination of a Predictive Cleavage Motif for Eluted Major Histocompatibility Complex Class II Ligands.
    Paul S; Karosiene E; Dhanda SK; Jurtz V; Edwards L; Nielsen M; Sette A; Peters B
    Front Immunol; 2018; 9():1795. PubMed ID: 30127785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. USMPep: universal sequence models for major histocompatibility complex binding affinity prediction.
    Vielhaben J; Wenzel M; Samek W; Strodthoff N
    BMC Bioinformatics; 2020 Jul; 21(1):279. PubMed ID: 32615972
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structural prediction of peptides binding to MHC class I molecules.
    Bui HH; Schiewe AJ; von Grafenstein H; Haworth IS
    Proteins; 2006 Apr; 63(1):43-52. PubMed ID: 16447245
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Prediction of MHC class I binding peptides, using SVMHC.
    Dönnes P; Elofsson A
    BMC Bioinformatics; 2002 Sep; 3():25. PubMed ID: 12225620
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Predicting peptide binding to Major Histocompatibility Complex molecules.
    Liao WW; Arthur JW
    Autoimmun Rev; 2011 Jun; 10(8):469-73. PubMed ID: 21333759
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification.
    Andreatta M; Karosiene E; Rasmussen M; Stryhn A; Buus S; Nielsen M
    Immunogenetics; 2015 Nov; 67(11-12):641-50. PubMed ID: 26416257
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Pan-Specific Prediction of Peptide-MHC Class I Complex Stability, a Correlate of T Cell Immunogenicity.
    Rasmussen M; Fenoy E; Harndahl M; Kristensen AB; Nielsen IK; Nielsen M; Buus S
    J Immunol; 2016 Aug; 197(4):1517-24. PubMed ID: 27402703
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Structure-aware deep model for MHC-II peptide binding affinity prediction.
    Yu Y; Zu L; Jiang J; Wu Y; Wang Y; Xu M; Liu Q
    BMC Genomics; 2024 Jan; 25(1):127. PubMed ID: 38291350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Structural Prediction of Peptide-MHC Binding Modes.
    Perez MAS; Cuendet MA; Röhrig UF; Michielin O; Zoete V
    Methods Mol Biol; 2022; 2405():245-282. PubMed ID: 35298818
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Benchmarking predictions of MHC class I restricted T cell epitopes in a comprehensively studied model system.
    Paul S; Croft NP; Purcell AW; Tscharke DC; Sette A; Nielsen M; Peters B
    PLoS Comput Biol; 2020 May; 16(5):e1007757. PubMed ID: 32453790
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Predicting MHC class I binder: existing approaches and a novel recurrent neural network solution.
    Jiang L; Yu H; Li J; Tang J; Guo Y; Guo F
    Brief Bioinform; 2021 Nov; 22(6):. PubMed ID: 34131696
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Predicting peptides that bind to MHC molecules using supervised learning of hidden Markov models.
    Mamitsuka H
    Proteins; 1998 Dec; 33(4):460-74. PubMed ID: 9849933
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network.
    Brusic V; Rudy G; Honeyman G; Hammer J; Harrison L
    Bioinformatics; 1998; 14(2):121-30. PubMed ID: 9545443
    [TBL] [Abstract][Full Text] [Related]  

  • 36. In silico design of MHC class I high binding affinity peptides through motifs activation map.
    Xiao Z; Zhang Y; Yu R; Chen Y; Jiang X; Wang Z; Li S
    BMC Bioinformatics; 2018 Dec; 19(Suppl 19):516. PubMed ID: 30598069
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A community resource benchmarking predictions of peptide binding to MHC-I molecules.
    Peters B; Bui HH; Frankild S; Nielson M; Lundegaard C; Kostem E; Basch D; Lamberth K; Harndahl M; Fleri W; Wilson SS; Sidney J; Lund O; Buus S; Sette A
    PLoS Comput Biol; 2006 Jun; 2(6):e65. PubMed ID: 16789818
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Improved prediction of MHC class I and class II epitopes using a novel Gibbs sampling approach.
    Nielsen M; Lundegaard C; Worning P; Hvid CS; Lamberth K; Buus S; Brunak S; Lund O
    Bioinformatics; 2004 Jun; 20(9):1388-97. PubMed ID: 14962912
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The PickPocket method for predicting binding specificities for receptors based on receptor pocket similarities: application to MHC-peptide binding.
    Zhang H; Lund O; Nielsen M
    Bioinformatics; 2009 May; 25(10):1293-9. PubMed ID: 19297351
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Ranking-Based Convolutional Neural Network Models for Peptide-MHC Class I Binding Prediction.
    Chen Z; Min MR; Ning X
    Front Mol Biosci; 2021; 8():634836. PubMed ID: 34079815
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.