BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 37147530)

  • 1. Single-cell subcellular protein localisation using novel ensembles of diverse deep architectures.
    Husain SS; Ong EJ; Minskiy D; Bober-Irizar M; Irizar A; Bober M
    Commun Biol; 2023 May; 6(1):489. PubMed ID: 37147530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-supervised deep learning encodes high-resolution features of protein subcellular localization.
    Kobayashi H; Cheveralls KC; Leonetti MD; Royer LA
    Nat Methods; 2022 Aug; 19(8):995-1003. PubMed ID: 35879608
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An incremental approach to automated protein localisation.
    Tscherepanow M; Jensen N; Kummert F
    BMC Bioinformatics; 2008 Oct; 9():445. PubMed ID: 18937856
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Automatic recognition of protein subcellular location patterns in single cells from immunofluorescence images based on deep learning.
    Zhu XL; Bao LX; Xue MQ; Xu YY
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36577448
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Learning to detect chest radiographs containing pulmonary lesions using visual attention networks.
    Pesce E; Joseph Withey S; Ypsilantis PP; Bakewell R; Goh V; Montana G
    Med Image Anal; 2019 Apr; 53():26-38. PubMed ID: 30660946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Two different phosphorylation-dephosphorylation cycles of Na,K-ATPase proteoliposomes accompanying Na+ transport in the absence of K+.
    Yoda A; Yoda S
    J Biol Chem; 1987 Jan; 262(1):110-5. PubMed ID: 3025196
    [TBL] [Abstract][Full Text] [Related]  

  • 7. THINGSvision: A Python Toolbox for Streamlining the Extraction of Activations From Deep Neural Networks.
    Muttenthaler L; Hebart MN
    Front Neuroinform; 2021; 15():679838. PubMed ID: 34630062
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Multi-scale deep learning for the imbalanced multi-label protein subcellular localization prediction based on immunohistochemistry images.
    Wang F; Wei L
    Bioinformatics; 2022 Apr; 38(9):2602-2611. PubMed ID: 35212728
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sparse annotation learning for dense volumetric MR image segmentation with uncertainty estimation.
    Osman YBM; Li C; Huang W; Wang S
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38035374
    [No Abstract]   [Full Text] [Related]  

  • 10. Antioxidant activity and interactions between whey protein and polysaccharides from different parts of
    Liu X; Tian J; Zhou Z; Pan Y; Li Z
    Front Nutr; 2023; 10():1020328. PubMed ID: 36761222
    [No Abstract]   [Full Text] [Related]  

  • 11. Deep learning is combined with massive-scale citizen science to improve large-scale image classification.
    Sullivan DP; Winsnes CF; Åkesson L; Hjelmare M; Wiking M; Schutten R; Campbell L; Leifsson H; Rhodes S; Nordgren A; Smith K; Revaz B; Finnbogason B; Szantner A; Lundberg E
    Nat Biotechnol; 2018 Oct; 36(9):820-828. PubMed ID: 30125267
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Deep convolutional neural network and IoT technology for healthcare.
    Wassan S; Dongyan H; Suhail B; Jhanjhi NZ; Xiao G; Ahmed S; Murugesan RK
    Digit Health; 2024; 10():20552076231220123. PubMed ID: 38250147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Deep Confidence: A Computationally Efficient Framework for Calculating Reliable Prediction Errors for Deep Neural Networks.
    Cortés-Ciriano I; Bender A
    J Chem Inf Model; 2019 Mar; 59(3):1269-1281. PubMed ID: 30336009
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ensembles of Deep Learning Models and Transfer Learning for Ear Recognition.
    Alshazly H; Linse C; Barth E; Martinetz T
    Sensors (Basel); 2019 Sep; 19(19):. PubMed ID: 31554303
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Deep Learning with LPC and Wavelet Algorithms for Driving Fault Diagnosis.
    Gong CA; Su CS; Liu YE; Guu DY; Chen YH
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146421
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Biological convolutions improve DNN robustness to noise and generalisation.
    Evans BD; Malhotra G; Bowers JS
    Neural Netw; 2022 Apr; 148():96-110. PubMed ID: 35114495
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Deep learning for AI-based diagnosis of skin-related neglected tropical diseases: a pilot study.
    Yotsu R; Ding Z; Hamm J; Blanton R
    medRxiv; 2023 Mar; ():. PubMed ID: 36993502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Multiple Protein Subcellular Locations Prediction Based on Deep Convolutional Neural Networks with Self-Attention Mechanism.
    Cong H; Liu H; Cao Y; Chen Y; Liang C
    Interdiscip Sci; 2022 Jun; 14(2):421-438. PubMed ID: 35066812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inferring differential subcellular localisation in comparative spatial proteomics using BANDLE.
    Crook OM; Davies CTR; Breckels LM; Christopher JA; Gatto L; Kirk PDW; Lilley KS
    Nat Commun; 2022 Oct; 13(1):5948. PubMed ID: 36216816
    [TBL] [Abstract][Full Text] [Related]  

  • 20. SMILE: a novel procedure for subcellular module identification with localisation expansion.
    Cheng L; Liu P; Leung KS
    IET Syst Biol; 2018 Apr; 12(2):55-61. PubMed ID: 29533218
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.