BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

147 related articles for article (PubMed ID: 37147901)

  • 1. Mobilization of a diatom mutator-like element (MULE) transposon inactivates the uridine monophosphate synthase (UMPS) locus in Phaeodactylum tricornutum.
    Abbriano RM; George J; Kahlke T; Commault AS; Fabris M
    Plant J; 2023 Aug; 115(4):926-936. PubMed ID: 37147901
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Potential impact of stress activated retrotransposons on genome evolution in a marine diatom.
    Maumus F; Allen AE; Mhiri C; Hu H; Jabbari K; Vardi A; Grandbastien MA; Bowler C
    BMC Genomics; 2009 Dec; 10():624. PubMed ID: 20028555
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of the UMP synthase gene by establishment of uracil auxotrophic mutants and the phenotypic complementation system in the marine diatom Phaeodactylum tricornutum.
    Sakaguchi T; Nakajima K; Matsuda Y
    Plant Physiol; 2011 May; 156(1):78-89. PubMed ID: 21367966
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Phaeodactylum tricornutum: An established model species for diatom molecular research and an emerging chassis for algal synthetic biology.
    Russo MT; Rogato A; Jaubert M; Karas BJ; Falciatore A
    J Phycol; 2023 Dec; 59(6):1114-1122. PubMed ID: 37975560
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis.
    Kroth PG; Chiovitti A; Gruber A; Martin-Jezequel V; Mock T; Parker MS; Stanley MS; Kaplan A; Caron L; Weber T; Maheswari U; Armbrust EV; Bowler C
    PLoS One; 2008 Jan; 3(1):e1426. PubMed ID: 18183306
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Flux balance analysis of primary metabolism in the diatom Phaeodactylum tricornutum.
    Kim J; Fabris M; Baart G; Kim MK; Goossens A; Vyverman W; Falkowski PG; Lun DS
    Plant J; 2016 Jan; 85(1):161-76. PubMed ID: 26590126
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The Phaeodactylum genome reveals the evolutionary history of diatom genomes.
    Bowler C; Allen AE; Badger JH; Grimwood J; Jabbari K; Kuo A; Maheswari U; Martens C; Maumus F; Otillar RP; Rayko E; Salamov A; Vandepoele K; Beszteri B; Gruber A; Heijde M; Katinka M; Mock T; Valentin K; Verret F; Berges JA; Brownlee C; Cadoret JP; Chiovitti A; Choi CJ; Coesel S; De Martino A; Detter JC; Durkin C; Falciatore A; Fournet J; Haruta M; Huysman MJ; Jenkins BD; Jiroutova K; Jorgensen RE; Joubert Y; Kaplan A; Kröger N; Kroth PG; La Roche J; Lindquist E; Lommer M; Martin-Jézéquel V; Lopez PJ; Lucas S; Mangogna M; McGinnis K; Medlin LK; Montsant A; Oudot-Le Secq MP; Napoli C; Obornik M; Parker MS; Petit JL; Porcel BM; Poulsen N; Robison M; Rychlewski L; Rynearson TA; Schmutz J; Shapiro H; Siaut M; Stanley M; Sussman MR; Taylor AR; Vardi A; von Dassow P; Vyverman W; Willis A; Wyrwicz LS; Rokhsar DS; Weissenbach J; Armbrust EV; Green BR; Van de Peer Y; Grigoriev IV
    Nature; 2008 Nov; 456(7219):239-44. PubMed ID: 18923393
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Tracking the sterol biosynthesis pathway of the diatom Phaeodactylum tricornutum.
    Fabris M; Matthijs M; Carbonelle S; Moses T; Pollier J; Dasseville R; Baart GJE; Vyverman W; Goossens A
    New Phytol; 2014 Nov; 204(3):521-535. PubMed ID: 24996048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Re-examination of two diatom reference genomes using long-read sequencing.
    Filloramo GV; Curtis BA; Blanche E; Archibald JM
    BMC Genomics; 2021 May; 22(1):379. PubMed ID: 34030633
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dicer-dependent heterochromatic small RNAs in the model diatom species Phaeodactylum tricornutum.
    Grypioti E; Richard H; Kryovrysanaki N; Jaubert M; Falciatore A; Verret F; Kalantidis K
    New Phytol; 2024 Jan; 241(2):811-826. PubMed ID: 38044751
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The diversity of small non-coding RNAs in the diatom Phaeodactylum tricornutum.
    Rogato A; Richard H; Sarazin A; Voss B; Cheminant Navarro S; Champeimont R; Navarro L; Carbone A; Hess WR; Falciatore A
    BMC Genomics; 2014 Aug; 15(1):698. PubMed ID: 25142710
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrative analysis of large scale transcriptome data draws a comprehensive landscape of Phaeodactylum tricornutum genome and evolutionary origin of diatoms.
    Rastogi A; Maheswari U; Dorrell RG; Vieira FRJ; Maumus F; Kustka A; McCarthy J; Allen AE; Kersey P; Bowler C; Tirichine L
    Sci Rep; 2018 Mar; 8(1):4834. PubMed ID: 29556065
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genome Annotation of a Model Diatom Phaeodactylum tricornutum Using an Integrated Proteogenomic Pipeline.
    Yang M; Lin X; Liu X; Zhang J; Ge F
    Mol Plant; 2018 Oct; 11(10):1292-1307. PubMed ID: 30176371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Generation of Mutants of Nuclear-Encoded Plastid Proteins Using CRISPR/Cas9 in the Diatom Phaeodactylum tricornutum.
    Allorent G; Guglielmino E; Giustini C; Courtois F
    Methods Mol Biol; 2018; 1829():367-378. PubMed ID: 29987734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A genomics approach reveals the global genetic polymorphism, structure, and functional diversity of ten accessions of the marine model diatom Phaeodactylum tricornutum.
    Rastogi A; Vieira FRJ; Deton-Cabanillas AF; Veluchamy A; Cantrel C; Wang G; Vanormelingen P; Bowler C; Piganeau G; Hu H; Tirichine L
    ISME J; 2020 Feb; 14(2):347-363. PubMed ID: 31624346
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Transformation of diatom Phaeodactylum tricornutum by electroporation and establishment of inducible selection marker.
    Niu YF; Yang ZK; Zhang MH; Zhu CC; Yang WD; Liu JS; Li HY
    Biotechniques; 2012 Jun; 52(6):. PubMed ID: 26307256
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Myosin diversity in the diatom Phaeodactylum tricornutum.
    Heintzelman MB; Enriquez ME
    Cytoskeleton (Hoboken); 2010 Mar; 67(3):142-51. PubMed ID: 20217677
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhancing the Spermidine Synthase-Based Polyamine Biosynthetic Pathway to Boost Rapid Growth in Marine Diatom
    Lin HY; Liu CH; Kang YT; Lin SW; Liu HY; Lee CT; Liu YC; Hsu MC; Chien YY; Hong SM; Cheng YH; Hsieh BY; Lin HJ
    Biomolecules; 2024 Mar; 14(3):. PubMed ID: 38540790
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genome engineering empowers the diatom Phaeodactylum tricornutum for biotechnology.
    Daboussi F; Leduc S; Maréchal A; Dubois G; Guyot V; Perez-Michaut C; Amato A; Falciatore A; Juillerat A; Beurdeley M; Voytas DF; Cavarec L; Duchateau P
    Nat Commun; 2014 May; 5():3831. PubMed ID: 24871200
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Modelling metabolism of the diatom Phaeodactylum tricornutum.
    Singh D; Carlson R; Fell D; Poolman M
    Biochem Soc Trans; 2015 Dec; 43(6):1182-6. PubMed ID: 26614658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.