These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

129 related articles for article (PubMed ID: 37148156)

  • 61. Suppression of experimental cerebral malaria by disruption of malate:quinone oxidoreductase.
    Niikura M; Komatsuya K; Inoue SI; Matsuda R; Asahi H; Inaoka DK; Kita K; Kobayashi F
    Malar J; 2017 Jun; 16(1):247. PubMed ID: 28606087
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Fumarase activity in NAD-dependent malic enzyme, MaeA, from Escherichia coli.
    Afzal AR; Jeon J; Jung CH
    Biochem Biophys Res Commun; 2023 Oct; 678():144-147. PubMed ID: 37634412
    [TBL] [Abstract][Full Text] [Related]  

  • 63. 13C nuclear magnetic resonance studies of malate and citrate synthesis and compartmentation in higher plant cells.
    Gout E; Bligny R; Pascal N; Douce R
    J Biol Chem; 1993 Feb; 268(6):3986-92. PubMed ID: 8440690
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Fumarate and cytosolic pH as modulators of the synthesis or consumption of C(4) organic acids through NADP-malic enzyme in Arabidopsis thaliana.
    Arias CL; Andreo CS; Drincovich MF; Gerrard Wheeler MC
    Plant Mol Biol; 2013 Feb; 81(3):297-307. PubMed ID: 23242919
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Opposite variations in fumarate and malate dominate metabolic phenotypes of Arabidopsis salicylate mutants with abnormal biomass under chilling.
    Scott IM; Ward JL; Miller SJ; Beale MH
    Physiol Plant; 2014 Dec; 152(4):660-74. PubMed ID: 24735077
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Spin ECHO proton NMR studies of the metabolism of malate and fumarate in human erythrocytes. Dependence on free NAD levels.
    Simpson RJ; Brindle KM; Campbell ID
    Biochim Biophys Acta; 1982 Oct; 721(2):191-200. PubMed ID: 7138916
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Fumarate reductase of Clostridium formicoaceticum. A peripheral membrane protein.
    Dorn M; Andreesen JR; Gottschalk G
    Arch Microbiol; 1978 Oct; 119(1):7-11. PubMed ID: 214050
    [TBL] [Abstract][Full Text] [Related]  

  • 68. A new water-soluble bacterial NADH: fumarate oxidoreductase.
    Bertsova YV; Oleynikov IP; Bogachev AV
    FEMS Microbiol Lett; 2020 Nov; 367(20):. PubMed ID: 33107907
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Riccardin D, a macrocyclic bisbibenzy, inhibits human breast cancer growth through the suppression of telomerase activity.
    Sun CC; Xu HM; Yuan Y; Gao ZH; Lou HX; Qu XJ
    Basic Clin Pharmacol Toxicol; 2014 Dec; 115(6):488-98. PubMed ID: 24836118
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Identification and characterization of a novel fumarase gene by metagenome expression cloning from marine microorganisms.
    Jiang C; Wu LL; Zhao GC; Shen PH; Jin K; Hao ZY; Li SX; Ma GF; Luo FF; Hu GQ; Kang WL; Qin XM; Bi YL; Tang XL; Wu B
    Microb Cell Fact; 2010 Nov; 9():91. PubMed ID: 21092234
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Molecular imaging of tumor photoimmunotherapy: Evidence of photosensitized tumor necrosis and hemodynamic changes.
    Kishimoto S; Oshima N; Yamamoto K; Munasinghe J; Ardenkjaer-Larsen JH; Mitchell JB; Choyke PL; Krishna MC
    Free Radic Biol Med; 2018 Feb; 116():1-10. PubMed ID: 29289705
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Reductive tricarboxylic acid cycle enzymes and reductive amino acid synthesis pathways contribute to electron balance in a
    McCully AL; Onyeziri MC; LaSarre B; Gliessman JR; McKinlay JB
    Microbiology (Reading); 2020 Feb; 166(2):199-211. PubMed ID: 31774392
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Asuc_0142 of
    Cho YB; Park JW; Unden G; Kim OB
    Microbiology (Reading); 2023 Oct; 169(10):. PubMed ID: 37906508
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Exposure to high levels of fumarate and succinate leads to apoptotic cytotoxicity and altered global DNA methylation profiles in vitro.
    Wentzel JF; Lewies A; Bronkhorst AJ; van Dyk E; du Plessis LH; Pretorius PJ
    Biochimie; 2017 Apr; 135():28-34. PubMed ID: 28104508
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Intracellular product recycling in high succinic acid producing yeast at low pH.
    Wahl SA; Bernal Martinez C; Zhao Z; van Gulik WM; Jansen MLA
    Microb Cell Fact; 2017 May; 16(1):90. PubMed ID: 28535757
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Cerebral metabolism of lactate in vivo: evidence for neuronal pyruvate carboxylation.
    Hassel B; Bråthe A
    J Cereb Blood Flow Metab; 2000 Feb; 20(2):327-36. PubMed ID: 10698070
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Cytoplasmic malate levels in maize root tips during K+ ion uptake determined by 13C-NMR spectroscopy.
    Chang K; Roberts JK
    Biochim Biophys Acta; 1991 Mar; 1092(1):29-34. PubMed ID: 2009309
    [TBL] [Abstract][Full Text] [Related]  

  • 78. L-malic acid production using immobilized Saccharomyces cerevisiae.
    Figueiredo ZM; Carvalho Júnior LB
    Appl Biochem Biotechnol; 1991 Aug; 30(2):217-24. PubMed ID: 1952933
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Hypoxia: a succinate-fumerate electron shuttle between peripheral cells and lung.
    Cascarano J; Ades IZ; O'Conner JD
    J Exp Zool; 1976 Nov; 198(2):149-53. PubMed ID: 978165
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Transport of C(4)-dicarboxylates in Wolinella succinogenes.
    Ullmann R; Gross R; Simon J; Unden G; Kröger A
    J Bacteriol; 2000 Oct; 182(20):5757-64. PubMed ID: 11004174
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.