These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 37148187)

  • 1. Components explain, but do eddy fluxes constrain? Carbon budget of a nitrogen-fertilized boreal Scots pine forest.
    Marshall JD; Tarvainen L; Zhao P; Lim H; Wallin G; Näsholm T; Lundmark T; Linder S; Peichl M
    New Phytol; 2023 Sep; 239(6):2166-2179. PubMed ID: 37148187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Total and component carbon fluxes of a Scots pine ecosystem from chamber measurements and eddy covariance.
    Zha T; Niinisto S; Xing Z; Wang KY; Kellomäki S; Barr AG
    Ann Bot; 2007 Feb; 99(2):345-53. PubMed ID: 17218344
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Component carbon fluxes and their contribution to ecosystem carbon exchange in a pine forest: an assessment based on eddy covariance measurements and an integrated model.
    Wang KY; Kellomäki S; Zha TS; Peltola H
    Tree Physiol; 2004 Jan; 24(1):19-34. PubMed ID: 14652211
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The dynamics of the carbon storage and fluxes in Scots pine (Pinus sylvestris) chronosequence.
    Uri V; Kukumägi M; Aosaar J; Varik M; Becker H; Aun K; Lõhmus K; Soosaar K; Astover A; Uri M; Buht M; Sepaste A; Padari A
    Sci Total Environ; 2022 Apr; 817():152973. PubMed ID: 35007591
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Estimating canopy gross primary production by combining phloem stable isotopes with canopy and mesophyll conductances.
    Vernay A; Tian X; Chi J; Linder S; Mäkelä A; Oren R; Peichl M; Stangl ZR; Tor-Ngern P; Marshall JD
    Plant Cell Environ; 2020 Sep; 43(9):2124-2142. PubMed ID: 32596814
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Does growing atmospheric CO
    Launiainen S; Katul GG; Leppä K; Kolari P; Aslan T; Grönholm T; Korhonen L; Mammarella I; Vesala T
    Glob Chang Biol; 2022 May; 28(9):2910-2929. PubMed ID: 35112446
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Radiation and temperature drive diurnal variation of aerobic methane emissions from Scots pine canopy.
    Kohl L; Tenhovirta SAM; Koskinen M; Putkinen A; Haikarainen I; Polvinen T; Galeotti L; Mammarella I; Siljanen HMP; Robson TM; Adamczyk B; Pihlatie M
    Proc Natl Acad Sci U S A; 2023 Dec; 120(52):e2308516120. PubMed ID: 38127980
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Half a century of Scots pine forest ecosystem monitoring reveals long-term effects of atmospheric deposition and climate change.
    Prietzel J; Falk W; Reger B; Uhl E; Pretzsch H; Zimmermann L
    Glob Chang Biol; 2020 Oct; 26(10):5796-5815. PubMed ID: 32645233
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evaluating carbon fluxes of global forest ecosystems by using an individual tree-based model FORCCHN.
    Ma J; Shugart HH; Yan X; Cao C; Wu S; Fang J
    Sci Total Environ; 2017 May; 586():939-951. PubMed ID: 28214117
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Do the energy fluxes and surface conductance of boreal coniferous forests in Europe scale with leaf area?
    Launiainen S; Katul GG; Kolari P; Lindroth A; Lohila A; Aurela M; Varlagin A; Grelle A; Vesala T
    Glob Chang Biol; 2016 Dec; 22(12):4096-4113. PubMed ID: 27614117
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A drained nutrient-poor peatland forest in boreal Sweden constitutes a net carbon sink after integrating terrestrial and aquatic fluxes.
    Tong CHM; Noumonvi KD; Ratcliffe J; Laudon H; Järveoja J; Drott A; Nilsson MB; Peichl M
    Glob Chang Biol; 2024 Mar; 30(3):e17246. PubMed ID: 38501699
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tropical rainforest carbon sink declines during El Niño as a result of reduced photosynthesis and increased respiration rates.
    Cavaleri MA; Coble AP; Ryan MG; Bauerle WL; Loescher HW; Oberbauer SF
    New Phytol; 2017 Oct; 216(1):136-149. PubMed ID: 28805245
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ectomycorrhizal root tips in relation to site and stand characteristics in Norway spruce and Scots pine stands in boreal forests.
    Helmisaari HS; Ostonen I; Lõhmus K; Derome J; Lindroos AJ; Merilä P; Nöjd P
    Tree Physiol; 2009 Mar; 29(3):445-56. PubMed ID: 19203968
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Association between sap flow-derived and eddy covariance-derived measurements of forest canopy CO2 uptake.
    Klein T; Rotenberg E; Tatarinov F; Yakir D
    New Phytol; 2016 Jan; 209(1):436-46. PubMed ID: 26301599
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Heat and drought impact on carbon exchange in an age-sequence of temperate pine forests.
    Arain MA; Xu B; Brodeur JJ; Khomik M; Peichl M; Beamesderfer E; Restrepo-Couple N; Thorne R
    Ecol Process; 2022; 11(1):7. PubMed ID: 35127311
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Landscape variation in canopy nitrogen and carbon assimilation in a temperate mixed forest.
    Zhou Z; Ollinger SV; Lepine L
    Oecologia; 2018 Oct; 188(2):595-606. PubMed ID: 30003370
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of eddy covariance and chamber-based methods for measuring CO2 flux in a temperate mixed forest.
    Wang M; Guan DX; Han SJ; Wu JL
    Tree Physiol; 2010 Jan; 30(1):149-63. PubMed ID: 19955193
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Towards physiologically meaningful water-use efficiency estimates from eddy covariance data.
    Knauer J; Zaehle S; Medlyn BE; Reichstein M; Williams CA; Migliavacca M; De Kauwe MG; Werner C; Keitel C; Kolari P; Limousin JM; Linderson ML
    Glob Chang Biol; 2018 Feb; 24(2):694-710. PubMed ID: 28875526
    [TBL] [Abstract][Full Text] [Related]  

  • 19. No impact of nitrogen fertilization on carbon sequestration in a temperate Pinus densiflora forest.
    Baek G; Lim H; Noh NJ; Kim C
    Sci Rep; 2023 Mar; 13(1):1743. PubMed ID: 36878968
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct and indirect climate change effects on carbon dioxide fluxes in a thawing boreal forest-wetland landscape.
    Helbig M; Chasmer LE; Desai AR; Kljun N; Quinton WL; Sonnentag O
    Glob Chang Biol; 2017 Aug; 23(8):3231-3248. PubMed ID: 28132402
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.