These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 37148278)

  • 1. 2D and 3D Electrospinning of Nanofibrous Structures by Far-Field Jet Writing.
    Jiang S; Kang Z; Liu F; Fan J
    ACS Appl Mater Interfaces; 2023 May; 15(19):23777-23782. PubMed ID: 37148278
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mass production of nanofibrous extracellular matrix with controlled 3D morphology for large-scale soft tissue regeneration.
    Alamein MA; Stephens S; Liu Q; Skabo S; Warnke PH
    Tissue Eng Part C Methods; 2013 Jun; 19(6):458-72. PubMed ID: 23102268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-Voltage Continuous Electrospinning Patterning.
    Li X; Li Z; Wang L; Ma G; Meng F; Pritchard RH; Gill EL; Liu Y; Huang YY
    ACS Appl Mater Interfaces; 2016 Nov; 8(47):32120-32131. PubMed ID: 27807979
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three-dimensional endothelial cell incorporation within bioactive nanofibrous scaffolds through concurrent emulsion electrospinning and coaxial cell electrospraying.
    Zhao Q; Zhou Y; Wang M
    Acta Biomater; 2021 Mar; 123():312-324. PubMed ID: 33508508
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A Parameter Study for 3D-Printing Organized Nanofibrous Collagen Scaffolds Using Direct-Write Electrospinning.
    Alexander FA; Johnson L; Williams K; Packer K
    Materials (Basel); 2019 Dec; 12(24):. PubMed ID: 31835507
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Self-Searching Writing of Human-Organ-Scale Three-Dimensional Topographic Scaffolds with Shape Memory by Silkworm-like Electrospun Autopilot Jet.
    Navaneethan B; Chou CF
    ACS Appl Mater Interfaces; 2022 Sep; 14(38):42841-42851. PubMed ID: 36106830
    [TBL] [Abstract][Full Text] [Related]  

  • 7. 3D jet writing of mechanically actuated tandem scaffolds.
    Moon S; Jones MS; Seo E; Lee J; Lahann L; Jordahl JH; Lee KJ; Lahann J
    Sci Adv; 2021 Apr; 7(16):. PubMed ID: 33853783
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Microscale 3D Printing Based on the Electric-Field-Driven Jet.
    Zhang G; Lan H; Qian L; Zhao J; Wang F
    3D Print Addit Manuf; 2020 Feb; 7(1):37-44. PubMed ID: 36654877
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrospun Three-Dimensional Nanofibrous Structure via Probe Arrays Inducing.
    Liu Y; Liu R; Wang X; Jiang J; Li W; Liu J; Guo S; Zheng G
    Micromachines (Basel); 2018 Aug; 9(9):. PubMed ID: 30424360
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Direct printing of patterned three-dimensional ultrafine fibrous scaffolds by stable jet electrospinning for cellular ingrowth.
    Yuan H; Zhou Q; Li B; Bao M; Lou X; Zhang Y
    Biofabrication; 2015 Nov; 7(4):045004. PubMed ID: 26538110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A direct 3D suspension near-field electrospinning technique for the fabrication of polymer nanoarrays.
    Nagle AR; Fay CD; Xie Z; Wallace GG; Wang X; Higgins MJ
    Nanotechnology; 2019 May; 30(19):195301. PubMed ID: 30673646
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrospinning on 3D Printed Polymers for Mechanically Stabilized Filter Composites.
    Kozior T; Mamun A; Trabelsi M; Wortmann M; Lilia S; Ehrmann A
    Polymers (Basel); 2019 Dec; 11(12):. PubMed ID: 31818001
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Nanofiber self-consistent additive manufacturing process for 3D microfluidics.
    Qiu B; Chen X; Xu F; Wu D; Zhou Y; Tu W; Jin H; He G; Chen S; Sun D
    Microsyst Nanoeng; 2022; 8():102. PubMed ID: 36119377
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Near-Field Electrospinning for Three-Dimensional Stacked Nanoarchitectures with High Aspect Ratios.
    Park YS; Kim J; Oh JM; Park S; Cho S; Ko H; Cho YK
    Nano Lett; 2020 Jan; 20(1):441-448. PubMed ID: 31763856
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Recent advances in melt electro writing for tissue engineering for 3D printing of microporous scaffolds for tissue engineering.
    Loewner S; Heene S; Baroth T; Heymann H; Cholewa F; Blume H; Blume C
    Front Bioeng Biotechnol; 2022; 10():896719. PubMed ID: 36061443
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Novel Self-Directing Single-Polymer Jet Developing Layered-Like 3D Buckled Microfibrous Scaffolds for Tissue Engineering Applications.
    Navaneethan B; Vijayakumar GP; Ashang Luwang L; Karuppiah S; Jayarama Reddy V; Ramakrishna S; Chou CF
    ACS Appl Mater Interfaces; 2021 Mar; 13(8):9691-9701. PubMed ID: 33605136
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast 3D printing with submicrometer features using electrostatic jet deflection.
    Liashenko I; Rosell-Llompart J; Cabot A
    Nat Commun; 2020 Feb; 11(1):753. PubMed ID: 32029714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Combining Materials Obtained by 3D-Printing and Electrospinning from Commercial Polylactide Filament to Produce Biocompatible Composites.
    Romero-Araya P; Pino V; Nenen A; Cárdenas V; Pavicic F; Ehrenfeld P; Serandour G; Lisoni JG; Moreno-Villoslada I; Flores ME
    Polymers (Basel); 2021 Nov; 13(21):. PubMed ID: 34771361
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.
    Hejazi F; Mirzadeh H
    J Mater Sci Mater Med; 2016 Sep; 27(9):143. PubMed ID: 27550014
    [TBL] [Abstract][Full Text] [Related]  

  • 20. X-ray computed tomography evaluations of additive manufactured multimaterial composites.
    Curto M; Kao AP; Keeble W; Tozzi G; Barber AH
    J Microsc; 2022 Mar; 285(3):131-143. PubMed ID: 34057229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.