These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
111 related articles for article (PubMed ID: 37148635)
1. Deep learning-based assessment of knee septic arthritis using transformer features in sonographic modalities. Lo CM; Lai KL Comput Methods Programs Biomed; 2023 Jul; 237():107575. PubMed ID: 37148635 [TBL] [Abstract][Full Text] [Related]
2. Septic Arthritis Modeling Using Sonographic Fusion with Attention and Selective Transformation: a Preliminary Study. Lo CM; Lai KL J Imaging Inform Med; 2024 Sep; ():. PubMed ID: 39284980 [TBL] [Abstract][Full Text] [Related]
3. Predictive stroke risk model with vision transformer-based Doppler features. Lo CM; Hung PH Med Phys; 2024 Jan; 51(1):126-138. PubMed ID: 38043124 [TBL] [Abstract][Full Text] [Related]
4. Computer-aided diagnosis of congenital abnormalities of the kidney and urinary tract in children based on ultrasound imaging data by integrating texture image features and deep transfer learning image features. Zheng Q; Furth SL; Tasian GE; Fan Y J Pediatr Urol; 2019 Feb; 15(1):75.e1-75.e7. PubMed ID: 30473474 [TBL] [Abstract][Full Text] [Related]
5. Machine-learning algorithm that can improve the diagnostic accuracy of septic arthritis of the knee. Choi ES; Sim JA; Na YG; Seon JK; Shin HD Knee Surg Sports Traumatol Arthrosc; 2021 Oct; 29(10):3142-3148. PubMed ID: 33452576 [TBL] [Abstract][Full Text] [Related]
6. Machine Learning-Aided Chronic Kidney Disease Diagnosis Based on Ultrasound Imaging Integrated with Computer-Extracted Measurable Features. Lee S; Kang M; Byeon K; Lee SE; Lee IH; Kim YA; Kang SW; Park JT J Digit Imaging; 2022 Oct; 35(5):1091-1100. PubMed ID: 35411524 [TBL] [Abstract][Full Text] [Related]
7. Automated evaluation of rheumatoid arthritis from hand radiographs using Machine Learning and deep learning techniques. Ahalya RK; Umapathy S; Krishnan PT; Joseph Raj AN Proc Inst Mech Eng H; 2022 Aug; 236(8):1238-1249. PubMed ID: 35822205 [TBL] [Abstract][Full Text] [Related]
8. Comparison of Deep-Learning and Conventional Machine-Learning Methods for the Automatic Recognition of the Hepatocellular Carcinoma Areas from Ultrasound Images. Brehar R; Mitrea DA; Vancea F; Marita T; Nedevschi S; Lupsor-Platon M; Rotaru M; Badea RI Sensors (Basel); 2020 May; 20(11):. PubMed ID: 32485986 [TBL] [Abstract][Full Text] [Related]
9. Evaluation of a deep learning-based computer-aided diagnosis system for distinguishing benign from malignant thyroid nodules in ultrasound images. Sun C; Zhang Y; Chang Q; Liu T; Zhang S; Wang X; Guo Q; Yao J; Sun W; Niu L Med Phys; 2020 Sep; 47(9):3952-3960. PubMed ID: 32473030 [TBL] [Abstract][Full Text] [Related]
10. Breast Tumor Classification in Ultrasound Images Using Combined Deep and Handcrafted Features. Daoud MI; Abdel-Rahman S; Bdair TM; Al-Najar MS; Al-Hawari FH; Alazrai R Sensors (Basel); 2020 Nov; 20(23):. PubMed ID: 33265900 [TBL] [Abstract][Full Text] [Related]
11. Multi-speed transformer network for neurodegenerative disease assessment and activity recognition. Cheriet M; Dentamaro V; Hamdan M; Impedovo D; Pirlo G Comput Methods Programs Biomed; 2023 Mar; 230():107344. PubMed ID: 36706617 [TBL] [Abstract][Full Text] [Related]
12. Multimodal feature learning and fusion on B-mode ultrasonography and sonoelastography using point-wise gated deep networks for prostate cancer diagnosis. Zhang Q; Xiong J; Cai Y; Shi J; Xu S; Zhang B Biomed Tech (Berl); 2020 Jan; 65(1):87-98. PubMed ID: 31743102 [TBL] [Abstract][Full Text] [Related]
13. Deep learning for patient-specific quality assurance: Identifying errors in radiotherapy delivery by radiomic analysis of gamma images with convolutional neural networks. Nyflot MJ; Thammasorn P; Wootton LS; Ford EC; Chaovalitwongse WA Med Phys; 2019 Feb; 46(2):456-464. PubMed ID: 30548601 [TBL] [Abstract][Full Text] [Related]
14. Novel computer aided diagnostic models on multimodality medical images to differentiate well differentiated liposarcomas from lipomas approached by deep learning methods. Yang Y; Zhou Y; Zhou C; Ma X Orphanet J Rare Dis; 2022 Apr; 17(1):158. PubMed ID: 35392952 [TBL] [Abstract][Full Text] [Related]
15. Early detection of ankylosing spondylitis using texture features and statistical machine learning, and deep learning, with some patient age analysis. Castro-Zunti R; Park EH; Choi Y; Jin GY; Ko SB Comput Med Imaging Graph; 2020 Jun; 82():101718. PubMed ID: 32464565 [TBL] [Abstract][Full Text] [Related]
16. A comparative study on deep learning models for text classification of unstructured medical notes with various levels of class imbalance. Lu H; Ehwerhemuepha L; Rakovski C BMC Med Res Methodol; 2022 Jul; 22(1):181. PubMed ID: 35780100 [TBL] [Abstract][Full Text] [Related]
17. MRI-Based Brain Tumor Classification Using Ensemble of Deep Features and Machine Learning Classifiers. Kang J; Ullah Z; Gwak J Sensors (Basel); 2021 Mar; 21(6):. PubMed ID: 33810176 [TBL] [Abstract][Full Text] [Related]
18. Deep feature classification of angiomyolipoma without visible fat and renal cell carcinoma in abdominal contrast-enhanced CT images with texture image patches and hand-crafted feature concatenation. Lee H; Hong H; Kim J; Jung DC Med Phys; 2018 Apr; 45(4):1550-1561. PubMed ID: 29474742 [TBL] [Abstract][Full Text] [Related]
19. A fully integrated computer-aided diagnosis system for digital X-ray mammograms via deep learning detection, segmentation, and classification. Al-Antari MA; Al-Masni MA; Choi MT; Han SM; Kim TS Int J Med Inform; 2018 Sep; 117():44-54. PubMed ID: 30032964 [TBL] [Abstract][Full Text] [Related]
20. Automatic feature learning using multichannel ROI based on deep structured algorithms for computerized lung cancer diagnosis. Sun W; Zheng B; Qian W Comput Biol Med; 2017 Oct; 89():530-539. PubMed ID: 28473055 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]