These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
107 related articles for article (PubMed ID: 37148668)
1. Three-dimensional topological radiogenomics of epidermal growth factor receptor Del19 and L858R mutation subtypes on computed tomography images of lung cancer patients. Ninomiya K; Arimura H; Tanaka K; Chan WY; Kabata Y; Mizuno S; Gowdh NFM; Yaakup NA; Liam CK; Chai CS; Ng KH Comput Methods Programs Biomed; 2023 Jun; 236():107544. PubMed ID: 37148668 [TBL] [Abstract][Full Text] [Related]
2. Robust radiogenomics approach to the identification of EGFR mutations among patients with NSCLC from three different countries using topologically invariant Betti numbers. Ninomiya K; Arimura H; Chan WY; Tanaka K; Mizuno S; Muhammad Gowdh NF; Yaakup NA; Liam CK; Chai CS; Ng KH PLoS One; 2021; 16(1):e0244354. PubMed ID: 33428651 [TBL] [Abstract][Full Text] [Related]
3. Next-Generation Radiogenomics Sequencing for Prediction of EGFR and KRAS Mutation Status in NSCLC Patients Using Multimodal Imaging and Machine Learning Algorithms. Shiri I; Maleki H; Hajianfar G; Abdollahi H; Ashrafinia S; Hatt M; Zaidi H; Oveisi M; Rahmim A Mol Imaging Biol; 2020 Aug; 22(4):1132-1148. PubMed ID: 32185618 [TBL] [Abstract][Full Text] [Related]
4. A novel radiomic nomogram for predicting epidermal growth factor receptor mutation in peripheral lung adenocarcinoma. Lu X; Li M; Zhang H; Hua S; Meng F; Yang H; Li X; Cao D Phys Med Biol; 2020 Mar; 65(5):055012. PubMed ID: 31978901 [TBL] [Abstract][Full Text] [Related]
5. Combination of Li S; Li Y; Zhao M; Wang P; Xin J Korean J Radiol; 2022 Sep; 23(9):921-930. PubMed ID: 36047542 [TBL] [Abstract][Full Text] [Related]
6. Radiomics for the prediction of EGFR mutation subtypes in non-small cell lung cancer. Li S; Ding C; Zhang H; Song J; Wu L Med Phys; 2019 Oct; 46(10):4545-4552. PubMed ID: 31376283 [TBL] [Abstract][Full Text] [Related]
7. Radiogenomic Models Using Machine Learning Techniques to Predict EGFR Mutations in Non-Small Cell Lung Cancer. Nair JKR; Saeed UA; McDougall CC; Sabri A; Kovacina B; Raidu BVS; Khokhar RA; Probst S; Hirsh V; Chankowsky J; Van Kempen LC; Taylor J Can Assoc Radiol J; 2021 Feb; 72(1):109-119. PubMed ID: 32063026 [TBL] [Abstract][Full Text] [Related]
8. Computed Tomography-Based Radiomics Signature: A Potential Indicator of Epidermal Growth Factor Receptor Mutation in Pulmonary Adenocarcinoma Appearing as a Subsolid Nodule. Yang X; Dong X; Wang J; Li W; Gu Z; Gao D; Zhong N; Guan Y Oncologist; 2019 Nov; 24(11):e1156-e1164. PubMed ID: 30936378 [TBL] [Abstract][Full Text] [Related]
9. EGFR Mutation Status and Subtypes Predicted by CT-Based 3D Radiomic Features in Lung Adenocarcinoma. Chen Q; Li Y; Cheng Q; Van Valkenburgh J; Sun X; Zheng C; Zhang R; Yuan R Onco Targets Ther; 2022; 15():597-608. PubMed ID: 35669165 [TBL] [Abstract][Full Text] [Related]
10. Radiomic Features Are Associated With EGFR Mutation Status in Lung Adenocarcinomas. Liu Y; Kim J; Balagurunathan Y; Li Q; Garcia AL; Stringfield O; Ye Z; Gillies RJ Clin Lung Cancer; 2016 Sep; 17(5):441-448.e6. PubMed ID: 27017476 [TBL] [Abstract][Full Text] [Related]
11. Impact of feature harmonization on radiogenomics analysis: Prediction of EGFR and KRAS mutations from non-small cell lung cancer PET/CT images. Shiri I; Amini M; Nazari M; Hajianfar G; Haddadi Avval A; Abdollahi H; Oveisi M; Arabi H; Rahmim A; Zaidi H Comput Biol Med; 2022 Mar; 142():105230. PubMed ID: 35051856 [TBL] [Abstract][Full Text] [Related]
12. Identification of epidermal growth factor receptor mutations in pulmonary adenocarcinoma using dual-energy spectral computed tomography. Li M; Zhang L; Tang W; Jin YJ; Qi LL; Wu N Eur Radiol; 2019 Jun; 29(6):2989-2997. PubMed ID: 30367185 [TBL] [Abstract][Full Text] [Related]
13. Usefulness of gradient tree boosting for predicting histological subtype and EGFR mutation status of non-small cell lung cancer on Koyasu S; Nishio M; Isoda H; Nakamoto Y; Togashi K Ann Nucl Med; 2020 Jan; 34(1):49-57. PubMed ID: 31659591 [TBL] [Abstract][Full Text] [Related]
14. Predicting EGFR mutation subtypes in lung adenocarcinoma using Liu Q; Sun D; Li N; Kim J; Feng D; Huang G; Wang L; Song S Transl Lung Cancer Res; 2020 Jun; 9(3):549-562. PubMed ID: 32676319 [TBL] [Abstract][Full Text] [Related]
15. Detailed identification of epidermal growth factor receptor mutations in lung adenocarcinoma: Combining radiomics with machine learning. Li S; Luo T; Ding C; Huang Q; Guan Z; Zhang H Med Phys; 2020 Aug; 47(8):3458-3466. PubMed ID: 32416013 [TBL] [Abstract][Full Text] [Related]
16. Radiogenomic correlation in lung adenocarcinoma with epidermal growth factor receptor mutations: Imaging features and histological subtypes. Hong SJ; Kim TJ; Choi YW; Park JS; Chung JH; Lee KW Eur Radiol; 2016 Oct; 26(10):3660-8. PubMed ID: 26787602 [TBL] [Abstract][Full Text] [Related]
17. Correlation between epidermal growth factor receptor mutation and histologic subtypes or characteristics of computed tomography findings in patients with resected pulmonary adenocarcinoma. Wang D; Yan N; Yang X; Ge Y; Xu D; Shao G; Peng Z J Cancer Res Ther; 2018 Jan; 14(1):240-244. PubMed ID: 29516992 [TBL] [Abstract][Full Text] [Related]
18. 3D radiomics predicts EGFR mutation, exon-19 deletion and exon-21 L858R mutation in lung adenocarcinoma. Liu G; Xu Z; Ge Y; Jiang B; Groen H; Vliegenthart R; Xie X Transl Lung Cancer Res; 2020 Aug; 9(4):1212-1224. PubMed ID: 32953499 [TBL] [Abstract][Full Text] [Related]
19. Radiomics signature: A potential and incremental predictor for EGFR mutation status in NSCLC patients, comparison with CT morphology. Tu W; Sun G; Fan L; Wang Y; Xia Y; Guan Y; Li Q; Zhang D; Liu S; Li Z Lung Cancer; 2019 Jun; 132():28-35. PubMed ID: 31097090 [TBL] [Abstract][Full Text] [Related]
20. Survival difference between Zhuo M; Zheng Q; Zhao J; Wu M; An T; Wang Y; Li J; Wang S; Zhong J; Yang X; Chen H; Jia B; Dong Z; Gao E; Wang J; Wang Z Chin J Cancer Res; 2017 Dec; 29(6):553-560. PubMed ID: 29353978 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]