These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37148700)

  • 1. 'Virtual pivot point' in human walking: Always experimentally observed but simulations suggest it may not be necessary for stability.
    Schreff L; Haeufle DFB; Badri-Spröwitz A; Vielemeyer J; Müller R
    J Biomech; 2023 May; 153():111605. PubMed ID: 37148700
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ground reaction forces intersect above the center of mass even when walking down visible and camouflaged curbs.
    Vielemeyer J; Grießbach E; Müller R
    J Exp Biol; 2019 Jul; 222(Pt 14):. PubMed ID: 31266780
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual pivot point: Always experimentally observed in human walking?
    Vielemeyer J; Schreff L; Hochstein S; Müller R
    PLoS One; 2023; 18(10):e0292874. PubMed ID: 37831656
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparative collision-based analysis of human gait.
    Lee DV; Comanescu TN; Butcher MT; Bertram JE
    Proc Biol Sci; 2013 Nov; 280(1771):20131779. PubMed ID: 24089334
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Human balance control in 3D running based on virtual pivot point concept.
    Firouzi V; Bahrami F; Sharbafi MA
    J Exp Biol; 2022 Feb; 225(4):. PubMed ID: 35040960
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ground reaction forces intersect above the center of mass in single support, but not in double support of human walking.
    Vielemeyer J; Müller R; Staufenberg NS; Renjewski D; Abel R
    J Biomech; 2021 May; 120():110387. PubMed ID: 33798969
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Compliant bipedal model with the center of pressure excursion associated with oscillatory behavior of the center of mass reproduces the human gait dynamics.
    Jung CK; Park S
    J Biomech; 2014 Jan; 47(1):223-9. PubMed ID: 24161797
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Balance Recoverability and Control of Bipedal Walkers With Foot Slip.
    Mihalec M; Trkov M; Yi J
    J Biomech Eng; 2022 May; 144(5):. PubMed ID: 34817050
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Upright human gait did not provide a major mechanical challenge for our ancestors.
    Maus HM; Lipfert SW; Gross M; Rummel J; Seyfarth A
    Nat Commun; 2010 Sep; 1():70. PubMed ID: 20842191
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The cost of leg forces in bipedal locomotion: a simple optimization study.
    Rebula JR; Kuo AD
    PLoS One; 2015; 10(2):e0117384. PubMed ID: 25707000
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Walking in circles: a modelling approach.
    Maus HM; Seyfarth A
    J R Soc Interface; 2014 Oct; 11(99):. PubMed ID: 25056215
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Optimizing Template Models to Quantifiably Assess Center of Mass Kinematic Reconstruction.
    Kelly DJ; Wensing PM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176080
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Investigation of neural and biomechanical impairments leading to pathological toe and heel gaits using neuromusculoskeletal modelling.
    Bruel A; Ghorbel SB; Di Russo A; Stanev D; Armand S; Courtine G; Ijspeert A
    J Physiol; 2022 Jun; 600(11):2691-2712. PubMed ID: 35442531
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Characteristics of ground reaction forces in normal and chimpanzee-like bipedal walking by humans.
    Li Y; Crompton RH; Alexander RM; Günther MM; Wang WJ
    Folia Primatol (Basel); 1996; 66(1-4):137-59. PubMed ID: 8953756
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Generalization of a muscle-reflex control model to 3D walking.
    Song S; Geyer H
    Annu Int Conf IEEE Eng Med Biol Soc; 2013; 2013():7463-6. PubMed ID: 24111471
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skipping without and with hurdles in bipedal macaque: global mechanics.
    Blickhan R; Andrada E; Hirasaki E; Ogihara N
    J Exp Biol; 2024 Apr; 227(7):. PubMed ID: 38426486
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interactive locomotion: Investigation and modeling of physically-paired humans while walking.
    Lanini J; Duburcq A; Razavi H; Le Goff CG; Ijspeert AJ
    PLoS One; 2017; 12(9):e0179989. PubMed ID: 28877161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.