These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 37148700)

  • 21. Elastic coupling of limb joints enables faster bipedal walking.
    Dean JC; Kuo AD
    J R Soc Interface; 2009 Jun; 6(35):561-73. PubMed ID: 18957360
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Control of human gait stability through foot placement.
    Bruijn SM; van Dieën JH
    J R Soc Interface; 2018 Jun; 15(143):. PubMed ID: 29875279
    [TBL] [Abstract][Full Text] [Related]  

  • 23. New method of three-dimensional analysis of bipedal locomotion for the study of displacements of the body and body-parts centers of mass in man and non-human primates: evolutionary framework.
    Tardieu C; Aurengo A; Tardieu B
    Am J Phys Anthropol; 1993 Apr; 90(4):455-76. PubMed ID: 8476004
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Optimizing Template Models to Quantifiably Assess Center of Mass Kinematic Reconstruction.
    Kelly DJ; Wensing PM
    IEEE Int Conf Rehabil Robot; 2022 Jul; 2022():1-6. PubMed ID: 36176080
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Hindlimb muscle function in relation to speed and gait: in vivo patterns of strain and activation in a hip and knee extensor of the rat (Rattus norvegicus).
    Gillis GB; Biewener AA
    J Exp Biol; 2001 Aug; 204(Pt 15):2717-31. PubMed ID: 11533122
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Mind your step: Target walking task reveals gait disturbance in individuals with incomplete spinal cord injury.
    Mohammadzada F; Zipser CM; Easthope CA; Halliday DM; Conway BA; Curt A; Schubert M
    J Neuroeng Rehabil; 2022 Mar; 19(1):36. PubMed ID: 35337335
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Center of mass velocity-based predictions in balance recovery following pelvis perturbations during human walking.
    Vlutters M; van Asseldonk EH; van der Kooij H
    J Exp Biol; 2016 May; 219(Pt 10):1514-23. PubMed ID: 26994171
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Bipedal spring-damper-mass model reproduces external mechanical power of human walking.
    Etenzi E; Monaco V
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():2446-9. PubMed ID: 26736788
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Postural dependence of human locomotion during gait initiation.
    Mille ML; Simoneau M; Rogers MW
    J Neurophysiol; 2014 Dec; 112(12):3095-103. PubMed ID: 25231611
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Rapid predictive simulations with complex musculoskeletal models suggest that diverse healthy and pathological human gaits can emerge from similar control strategies.
    Falisse A; Serrancolí G; Dembia CL; Gillis J; Jonkers I; De Groote F
    J R Soc Interface; 2019 Aug; 16(157):20190402. PubMed ID: 31431186
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The role of series ankle elasticity in bipedal walking.
    Zelik KE; Huang TW; Adamczyk PG; Kuo AD
    J Theor Biol; 2014 Apr; 346():75-85. PubMed ID: 24365635
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The strengths and weaknesses of inverted pendulum models of human walking.
    McGrath M; Howard D; Baker R
    Gait Posture; 2015 Feb; 41(2):389-94. PubMed ID: 25468688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of vestibular stimulation on gait stability when walking at different step widths.
    Magnani RM; van Dieën JH; Bruijn SM
    Exp Brain Res; 2023 Jan; 241(1):49-58. PubMed ID: 36346447
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The impact of changes in gait speed and step frequency on the extent of the center of mass displacements.
    Staszkiewicz R; Ruchlewicz T; Forczek W; Laska J
    Acta Bioeng Biomech; 2010; 12(3):13-20. PubMed ID: 21243966
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Steep (30°) uphill walking vs. running: COM movements, stride kinematics, and leg muscle excitations.
    Whiting CS; Allen SP; Brill JW; Kram R
    Eur J Appl Physiol; 2020 Oct; 120(10):2147-2157. PubMed ID: 32705391
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Predictive Simulations of Neuromuscular Coordination and Joint-Contact Loading in Human Gait.
    Lin YC; Walter JP; Pandy MG
    Ann Biomed Eng; 2018 Aug; 46(8):1216-1227. PubMed ID: 29671152
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Children and adults minimise activated muscle volume by selecting gait parameters that balance gross mechanical power and work demands.
    Hubel TY; Usherwood JR
    J Exp Biol; 2015 Sep; 218(Pt 18):2830-9. PubMed ID: 26400978
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Collisional mechanics of the diagonal gaits of horses over a range of speeds.
    Hobbs SJ; Clayton HM
    PeerJ; 2019; 7():e7689. PubMed ID: 31576241
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contributions to the understanding of gait control.
    Simonsen EB
    Dan Med J; 2014 Apr; 61(4):B4823. PubMed ID: 24814597
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.