These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 37149024)
1. Impacts of calcium peroxide on phosphorus and tungsten releases from sediments. Chen X; Liu L; Yan W; Li M; Li Q; He X; Zhao Z; Liu R; Zhang S; Huang Y; Jiang F Environ Res; 2023 Aug; 231(Pt 1):116060. PubMed ID: 37149024 [TBL] [Abstract][Full Text] [Related]
2. Influence on the release of arsenic and tungsten from sediment, and effect on other heavy metals and microorganisms by ceria nanoparticle capping. Li Q; Liu L; Yan W; Chen X; Liu R; Zhao Z; Jiang F; Huang Y; Zhang S; Zou Y; Yang C Environ Pollut; 2024 Feb; 343():123161. PubMed ID: 38104760 [TBL] [Abstract][Full Text] [Related]
3. Simultaneous immobilization of sediment internal phosphorus, arsenic and tungsten by lanthanum carbonate capping. Li Q; Yan W; Li M; Chen X; Wu T; He X; Yao Q; Yan Y; Li G Environ Res; 2024 Feb; 242():117817. PubMed ID: 38043892 [TBL] [Abstract][Full Text] [Related]
4. Phosphorus mobilization in lake sediments: Experimental evidence of strong control by iron and negligible influences of manganese redox reactions. Chen M; Ding S; Wu Y; Fan X; Jin Z; Tsang DCW; Wang Y; Zhang C Environ Pollut; 2019 Mar; 246():472-481. PubMed ID: 30583155 [TBL] [Abstract][Full Text] [Related]
5. The combined effects of lanthanum-modified bentonite and Vallisneria spiralis on phosphorus, dissolved organic matter, and heavy metal(loid)s. Chen X; Liu L; Wang Y; Zhou L; Xiao J; Yan W; Li M; Li Q; He X; Zhang L; You X; Zhu D; Yan J; Wang B; Hang X Sci Total Environ; 2024 Mar; 917():170502. PubMed ID: 38301791 [TBL] [Abstract][Full Text] [Related]
6. Fe/Mn (oxyhydr)oxides reductive dissolution promoted by cyanobacterial algal bloom-derived dissolved organic matter caused sediment W release during an algal bloom in Taihu Lake. Lin J; Chen X; Liu Y; Wang Y; Shuai J; Chen M Water Res; 2024 Aug; 260():121899. PubMed ID: 38908314 [TBL] [Abstract][Full Text] [Related]
7. Effectiveness and mechanism of aluminum/iron co-modified calcite capping and amendment for controlling phosphorus release from sediments. Lei J; Lin J; Zhan Y; Zhang Z; Ma J J Environ Manage; 2021 Nov; 298():113471. PubMed ID: 34358942 [TBL] [Abstract][Full Text] [Related]
8. Contrasting effect of zirconium-, iron-, and zirconium/iron-modified attapulgites capping and amendment on phosphorus mobilization in sediment. Liu N; Chen W; Lin J; Zhan Y Environ Sci Pollut Res Int; 2022 Mar; 29(13):18508-18526. PubMed ID: 34689275 [TBL] [Abstract][Full Text] [Related]
9. Assessment of iron-modified calcite/zeolite mixture as a capping material to control sedimentary phosphorus and nitrogen liberation. Zhan Y; Yu Y; Lin J; Wu X; Wang Y; Zhao Y Environ Sci Pollut Res Int; 2020 Feb; 27(4):3962-3978. PubMed ID: 31820252 [TBL] [Abstract][Full Text] [Related]
10. Synergistic adsorption of phosphorus by iron in lanthanum modified bentonite (Phoslock Ding S; Sun Q; Chen X; Liu Q; Wang D; Lin J; Zhang C; Tsang DCW Water Res; 2018 May; 134():32-43. PubMed ID: 29407649 [TBL] [Abstract][Full Text] [Related]
11. Effects of nFe Chen X; Liu L; Yan W; Li M; Xing X; Li Q; Zhu L; Wu T; He X Environ Sci Pollut Res Int; 2021 Sep; 28(34):47056-47065. PubMed ID: 33886054 [TBL] [Abstract][Full Text] [Related]
12. Impact of calcium peroxide dosage on the control of nutrients release from sediment in the anoxic landscape water. Wang Y; Wang WH; Lu XX; Feng LL; Xue FR; Sun LQ Environ Sci Pollut Res Int; 2019 Dec; 26(36):37070-37081. PubMed ID: 31745766 [TBL] [Abstract][Full Text] [Related]
13. Combined use of calcium nitrate, zeolite, and anion exchange resin for controlling phosphorus and nitrogen release from sediment and for overcoming disadvantage of calcium nitrate addition technology. Zhan Y; Wu X; Lin J Environ Sci Pollut Res Int; 2020 Jul; 27(20):24863-24878. PubMed ID: 32307687 [TBL] [Abstract][Full Text] [Related]
14. Physi-chemical mechanism and control effect of CaO Wang WH; Wang Y; Yang PL; Wang M; Zhou K Chemosphere; 2022 Sep; 303(Pt 3):135283. PubMed ID: 35688200 [TBL] [Abstract][Full Text] [Related]
15. Inhibition of sediment internal phosphorus release in agricultural drainage ditches by ceria nanoparticle capping. Li Q; Liu L; He H; Yan W Environ Sci Pollut Res Int; 2022 Nov; 29(54):81789-81803. PubMed ID: 35739441 [TBL] [Abstract][Full Text] [Related]
16. Phosphorus adsorption and sedimentation by suspended sediments from Zhushan Bay, Taihu Lake. Wang P; Hu B; Wang C; Lei Y Environ Sci Pollut Res Int; 2015 May; 22(9):6559-69. PubMed ID: 25703615 [TBL] [Abstract][Full Text] [Related]
17. Mechanisms driving phosphorus release during algal blooms based on hourly changes in iron and phosphorus concentrations in sediments. Chen M; Ding S; Chen X; Sun Q; Fan X; Lin J; Ren M; Yang L; Zhang C Water Res; 2018 Apr; 133():153-164. PubMed ID: 29407697 [TBL] [Abstract][Full Text] [Related]
18. An investigation of the effects of capping on internal phosphorus release from sediments under rooted macrophytes (Phragmites australis) revegetation. Yu J; Zhong J; Chen Q; Huang W; Hu L; Zhang Y; Fan C Environ Sci Pollut Res Int; 2018 Sep; 25(25):24682-24694. PubMed ID: 29916150 [TBL] [Abstract][Full Text] [Related]
19. Kinetics of phosphorus release from sediments and its relationship with iron speciation influenced by the mussel (Corbicula fluminea) bioturbation. Chen M; Ding S; Liu L; Xu D; Gong M; Tang H; Zhang C Sci Total Environ; 2016 Jan; 542(Pt A):833-40. PubMed ID: 26556747 [TBL] [Abstract][Full Text] [Related]
20. Controlling internal nitrogen and phosphorus loading using Ca-poor soil capping in shallow eutrophic lakes: Long-term effects and mechanisms. Sun C; Zhong J; Pan G; Mortimer RJG; Yu J; Wen S; Zhang L; Yin H; Fan C Water Res; 2023 Apr; 233():119797. PubMed ID: 36870105 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]