These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 37149026)

  • 1. A quasi-one-dimensional model for ion-aerosol interactions and aerosol charge state downwind of corona-producing alternating current (AC) HVPL under stable atmospheric conditions.
    Wright MD; Matthews JC; Shallcross DE
    Environ Res; 2023 Aug; 231(Pt 1):115908. PubMed ID: 37149026
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Overhead AC powerlines and rain can alter the electric charge distribution on airborne particles - Implications for aerosol dispersion and lung deposition.
    Wright MD; Buckley AJ; Matthews JC; Shallcross DE; Henshaw DL
    Environ Res; 2023 Jul; 228():115834. PubMed ID: 37037314
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Corona ions from overhead transmission voltage powerlines: effect on direct current electric field and ambient particle concentration levels.
    J-Fatokun F; Jayaratne R; Morawska L; Birtwhistle D; Rachman R; Mengersen K
    Environ Sci Technol; 2010 Jan; 44(1):526-31. PubMed ID: 19954180
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Experimental determination of the dispersion of ions from a point source in the environment.
    Jayaratne ER; Ling X; Pushpawela B; Morawska L
    Environ Technol; 2019 Apr; 40(10):1213-1222. PubMed ID: 29252132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A note on the charging of aerosols by overhead line corona.
    Jeffers D
    Radiat Prot Dosimetry; 2001; 95(2):181-3. PubMed ID: 11572648
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling and analyses do not support the hypothesis that charging by power-line corona increases lung deposition of airborne particles.
    Jeffers D
    Radiat Prot Dosimetry; 2007; 123(2):257-61. PubMed ID: 16987911
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Charging of radioactive and environmental airborne particles.
    Jang GG; Wiechert AI; Kim YH; Ladshaw AP; Spano T; McFarlane J; Myhre K; Song JJ; Yiacoumi S; Tsouris C
    J Environ Radioact; 2022 Jul; 248():106887. PubMed ID: 35487089
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Miniature Dual-Corona Ionizer for Bipolar Charging of Aerosol.
    Qi C; Kulkarni P
    Aerosol Sci Technol; 2013 Jan; 47(1):81-92. PubMed ID: 26512158
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Childhood cancer and exposure to corona ions from power lines: an epidemiological test.
    Swanson J; Bunch KJ; Vincent TJ; Murphy MF
    J Radiol Prot; 2014 Dec; 34(4):873-89. PubMed ID: 25356811
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development and application of an aerosol screening model for size-resolved urban aerosols.
    Stanier CO; Lee SR;
    Res Rep Health Eff Inst; 2014 Jun; (179):3-79. PubMed ID: 25145039
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Emission of particulates from a pig farm with central air exhaust in the pig stall].
    Hartung J; Seedorf J; Trickl T; Gronauer H
    Dtsch Tierarztl Wochenschr; 1998 Jun; 105(6):244-5. PubMed ID: 9693460
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Corona ions from powerlines and increased exposure to pollutant aerosols.
    Fews AP; Henshaw DL; Wilding RJ; Keitch PA
    Int J Radiat Biol; 1999 Dec; 75(12):1523-31. PubMed ID: 10622258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characteristics and potential human health hazards of charged aerosols generated by high-voltage power lines.
    Jung JS; Lee JW; Mailan Arachchige Don RK; Park DS; Hong SC
    Int J Occup Saf Ergon; 2019 Mar; 25(1):91-98. PubMed ID: 29616884
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Charged aerosol particles and air pollution.
    Brock JR; Marlow WH
    Environ Lett; 1975; 10(1):53-67. PubMed ID: 1204585
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Electrostatic charged nanofiber filter for filtering airborne novel coronavirus (COVID-19) and nano-aerosols.
    Leung WWF; Sun Q
    Sep Purif Technol; 2020 Nov; 250():116886. PubMed ID: 32322159
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Deposition and removal of fugitive dust in the arid southwestern United States: measurements and model results.
    Etyemezian V; Ahonen S; Nikolic D; Gillies J; Kuhns H; Gillette D; Veranth J
    J Air Waste Manag Assoc; 2004 Sep; 54(9):1099-111. PubMed ID: 15468663
    [TBL] [Abstract][Full Text] [Related]  

  • 17. AC corona-discharge aerosol-neutralization device adapted to liquid chromatography/particle beam/mass spectrometry.
    Wilkes JG; Freeman JP; Heinze TM; Lay JO; Vestal ML
    Rapid Commun Mass Spectrom; 1995; 9(2):138-42. PubMed ID: 7696708
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines.
    Jayaratne ER; Ling X; Morawska L
    Sci Total Environ; 2015 Sep; 526():14-8. PubMed ID: 25917858
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The relationship between aerosol concentration and atmospheric potential gradient in urban environments.
    Wright MD; Matthews JC; Silva HG; Bacak A; Percival C; Shallcross DE
    Sci Total Environ; 2020 May; 716():134959. PubMed ID: 31837845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Aerosol composition and properties variation at the ground and over the column under different air masses advection in South Italy.
    Pavese G; Lettino A; Calvello M; Esposito F; Fiore S
    Environ Sci Pollut Res Int; 2016 Apr; 23(7):6546-62. PubMed ID: 26635222
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.